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Brasil, ante un escenario global de preocupación por el cambio climático, viene incrementando el 
uso de energías renovables, especialmente la energía solar en los últimos años. Con el crecimiento 
de su participación, las características de la energía solar, como la intermitencia y las fluctuaciones 
aleatorias, vienen afectando la planificación de la operación del Sistema Eléctrico Brasileño (SBE). Tales 
factores pueden ser estudiados con modelos de series de tiempo, auxiliando la planificación de plantas 
generadoras y SBE. Con el fin de contribuir al análisis factorial, el objetivo de esta investigación es 
analizar las características de la generación de energía fotovoltaica en las estaciones meteorológicas del 
año en dos regiones de Brasil con diferentes incidencias solares. Para ello, se aplica una metodología 
basada en conceptos de Cadenas de Markov para dos series de tiempo estacionarias. El trabajo se 
destaca por la subdivisión de las series de tiempo entre las estaciones climáticas, por el uso de datos 
aún no estudiados y por la presentación de la metodología y resultados en detalle. El objetivo de la 
investigación fue alcanzado con éxito, evidenciando las diferencias entre los modelos de generación de 
energía solar entre las estaciones meteorológicas y las dos regiones estudiadas.

Brazil, given a global scenario of concern with climate change, has been increasing the use of renewable 
energy, especially solar energy in the last years. With the growth in its participation, the characteristics of 
solar energy, such as intermittence and random fluctuations, have been affecting the operation planning 
of the Brazilian Electricity System (BES). Such factors can be studied with time series modeling, helping 
the planning of power plants and BES. In order to contribute to the factor analysis, the objective of 
this research is to analyze the characteristics of photovoltaic energy generation in the meteorological 
seasons of the year in two regions of Brazil with different solar incidences. For this, a methodology 
based on Markov Chain concepts is applied for two stationary time series. The work stands out for the 
subdivision of the time series between the climatic seasons, for the use of data not yet studied and for 
the presentation of the methodology and results in detail. The objective of the research was successfully 
achieved, making evident the differences between the solar energy generation models between the 
meteorological seasons and the two regions studied.

PALABRAS CLAVE: Fuentes de Energía Renovable, Fuentes de Energía Variables, Energía Solar, 
Estaciones Climáticas, Cadenas de Markov, K-means

KEYWORDS: Renewable Energy Sources, Variable Energy Sources, Solar Energy, Climatic Seasons, 
Markov Chains, K-means
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1. INTRODUCTION

Faced with a scenario of concern about climate 
change, countries are carrying out the energy 
transition, thus moving away from using fossil 
energy sources and increasing the use of 
renewable sources (Malar, 2022). According 
to the International Renewable Energy Agency 
(2023), the planet had an increase in renewable 
energy capacity in 2022 of 13% compared 
to the previous year. Renewable energies are 
considered inexhaustible, as they can always be 
renewed by nature, and generate considerably 
lower environmental impacts than non-renewable 
energies (EPE, 2022).

Brazil has been following this transformation 
in the world’s energy matrix. According to the 
2023 National Energy Balance, 47.4% of Brazil’s 
domestic energy supply in 2022 came from 
renewable sources. In 2013, this percentage was 
40.6%, that is, in 9 years, there was an increase of 
approximately 17% (EPE, 2023).

In this context, solar energy is a source that 
deserves to be highlighted. In 2022, it accounted 
for 3.6% of the domestic energy supply in Brazil. 
In addition, between 2021 and 2022, it had an 
82.4% growth in installed capacity, being the 
fastest growing in the country (EPE, 2023). With 
the increase in its use in Brazil, its characteristics, 
such as intermittency and random fluctuations, will 
affect even more the country’s energy generation. 
Solar energy is generated from solar radiation, 
captured by photovoltaic panels. In addition to 
being renewable, it has the advantages of being 
silent, requiring little maintenance and being able 
to be installed in a short time (Imhoff, 2007). With 
the increase in its use in Brazil, its characteristics, 
such as intermittency and random fluctuations, 
will increasingly affect the country’s energy 
generation. Considering this scenario, the use of 
time series modeling and simulation methods to 
study this impact is important for the planning of 
the plants and the BES.

In order to contribute to this theme, the objective 
of this work is to analyze the characteristics 

of photovoltaic energy generation in different 
climatic seasons (summer, autumn, winter and 
spring) in two regions of Brazil with different solar 
incidences. For this, the time series discretization 
approach was used for Markov Chain modeling, a 
methodology already widely used in the literature 
for the analysis of electric energy time series. 
Furthermore, the subdivision by climatic season 
differs from other studies because it is based on 
a natural phenomenon, as opposed to monthly 
subdivisions, which are more frequently used, for 
example.

It is worth noting that this study presents relevant 
differentials in the literature. In the first place, to 
the authors’ knowledge, data that have not yet 
been studied are used. Also, these data are from 
two plants located in regions with considerably 
different characteristics and were divided by the 
climatic seasons of the year, which allowed both 
geographical and temporal comparisons.

The analysis presented in the study was carried 
out through two daily photovoltaic energy 
generation databases from ONS (National Electric 
System Operator): Nova Olinda Complex, located 
in Piauí (PI) and founded in 2017 (G1, 2017); and 
Guaimbê Complex, located in the state of São 
Paulo (SP) and inaugurated in 2019 (G1, 2019). 
According to Gadelha de Lima (2020), the state of 
Piauí has different meteorological characteristics 
depending on the quarter of the year, which could 
justify a division into four seasons.

Figure 1 shows the location of the two plants on 
the brazilian solarimetric map. This map is an 
adaptation of the one presented in the Brazilian 
Atlas of Solar Energy (Pereira et al., 2017) and 
shows the annual average of the total daily normal 
direct irradiation over Brazil. It is possible to 
perceive the difference in the averages of direct 
irradiation between the two locations of the plants, 
which is greater in the Nova Olinda Complex 
(Ribeira do Piauí – PI) in relation to the Guaimbê 
Complex (Guaimbê – SP).
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2. THEORETICAL FRAMEWORK

The applied methodology is exploratory and can 
be divided into three main phases. The first relates 
to data pre-processing, including data collection, 
analysis, and treatment. In the second phase, 
data processing is performed, involving modeling 
via Markov Chains and obtaining results such 
as stationary distribution, recurrence time, and 

In the literature, there are several renewable 
energy modeling studies that apply the concept 
of Markov Chains in their methodologies. Sigauke 
and Chikobvu (2017) performed an analysis of 
daily peaks of electricity demand through Markov 
Chains, seeking to find the stationary distribution 
(distribution of states in which the chain will 
stabilize). To do this, the authors used demand 
data from South Africa from 2000 to 2011. 
Models with two states were considered, being 
the positive or negative variations between the 
days, and with three states, where the difference 

Figure 1 - Brazilian Solarimetric Map - Average annual normal direct irradiation.

Source: Adapted from Pereira et al. (2017).

first passage time. In the last phase, data post-
processing, the results obtained were analyzed 
for comparison between the climatic seasons and 
between the plants.

between small and large positive variations was 
considered.

Maçaira et al. (2019), faced with a scenario of 
increased wind energy use in Brazil, showed that 
the dispatch model used in the period of their 
research did not consider the stochastic behavior 
of this energy source. The model, which sought 
to optimize long-term energy planning, only 
evaluated the future aspects of water and thermal 
sources. In view of this, the work proposed 
the wind-hydrothermal dispatch model, which 



122
A methodology based on Markov Chains was 
applied to modeling the time series of photovoltaic 
solar power generation. Figure 2 shows the 
flowchart with the main stages of the methodology, 

3. METHODOLOGY

divided into the data’s pre-processing, processing, 
and post-processing phases.

 Figure 2 - Main steps of the methodology.

incorporated wind power generation using the 
MCMC (Markov-Chain Monte Carlo) method to 
simulate energy scenarios.

Ma et al. (2020) proposed a methodology for 
aggregating solar photovoltaic time series data 
through clustering via k-means, Markov Chains, 
and Monte Carlo simulation. For the authors, 
Markovian processes efficiently represent the 
transitions of photovoltaic power generation time 
series. Based on the proposed k-means-MCMC 
methodology, initially, the power generation data 
should be grouped following the optimal number 
of clusters, and then the transition matrix should 
be assembled. Finally, from this matrix, energy 
scenarios are generated via simulation.

Melo (2022) sought to show the spatial and 
temporal complementarity between variable 
renewable energies through the joint stochastic 
modeling and simulation of solar and wind energy. 
To this end, it used two methodologies and 
performs three applications, through databases 
of mills located in the Northeast of Brazil. Both 
methodologies use Markov Chain modeling, 
Monte Carlo simulation to obtain scenarios, and 
the k-means technique to perform data clustering.
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The pre-processing phase consists of obtaining, 
analyzing, and treating data. The data of the time 
series of daily photovoltaic energy generation of 
the Nova Olinda (Piauí) and Guaimbê (São Paulo) 
complexes were obtained from the National 
Electric System Operator (ONS, 2022) for a period 
of four years, from 06/21/2018 to 06/20/2022, with 
a total of 1,461 observations for each complex. 
The only two variables used were date and 
energy generation. According to Ma et al. (2020), 
due to the characteristics of photovoltaic power 
generation data, the optimal time scale to fragment 
scenarios would be daily. The methodology is 
applied first to the Nova Olinda Complex and then 
to the Guaimbê Complex, so the two series are 
worked separately in the modeling.

A preliminary analysis of the data obtained 
from energy generation during the period was 
performed. First, to test the stationarity of the 
time series over the four years, Augmented 
Dickey-Fuller (ADF) unit root tests were carried 
out. The null hypothesis of the ADF test is that 
there are unit roots in the time series and, 
therefore, it would not be stationary (Dickey, D.; 
Fuller, 1979). The stationarity test is essential for 

3.1. Pre-processing

3.2. Processing

the application of the Markov Chain concepts, 
because a non-stationary series depends on time, 
and in Markovian processes, the probabilities of 
transition to the next state depend only on the 
current state (Norris, 1998). Furthermore, non-
stationarity would mean a change in the installed 
capacity of the plants.

To complete the pre-processing phase, a 
treatment of the databases is carried out so that 
the time series can be modeled as Markov Chains. 
First, the null or missing values were replaced by 
the averages of the month in the corresponding 
year, as it is an adequate estimate for the value 
of generation in the period, given seasonality. 
Then, so that the time series could be analyzed 
by climatic season, they were subdivided into four 
subsets: Summer, Autumn, Winter, and Spring.

In order to group the observations with greater 
similarities, the subsets of the solar energy 
generation time series, divided by climatic 
season, were discretized into markovian states 
independently. The clustering method used 
was k-means (MacQueen, 1967), as it is easily 
programmable and computationally economical. 
In the k-means method, a number k of clusters 
is pre-specified, and initial k centroids (average 
value of clusters) are defined based on a random 
variable. Then, the following steps are performed: 
Observations are assigned to the nearest centroid 
cluster by calculating the distance from each 
observation to each centroid; New k centroids 
are calculated from the average of intra-cluster 
observations; Iterations of steps 1 and 2 are 

3.2.1   Series discretization via k-means

performed until the centroid values do not change 
further The method can be summarized by the 
objective function (1).

However, to apply the k-means method, it is 
necessary to pre-define the number k of clusters. 
According to Fritz et al. (2020), choosing the 
wrong values for k can lead to poor results, 
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and to choose the ideal number of clusters, it is 
common to use the elbow method, first discussed 
by Thorndike (1953). As the number of clusters 
increases, the sum of the squared error of the 
distance between the observations and the 
centroids tends to decrease (Thorndike, 1953). 
Hence, the elbow method helps to limit the choice 
of very high values for k, in which there are no 
relevant benefits with the addition of a new cluster. 
The elbow method can be used in conjunction with 
the k-means method to find the optimal number of 
clusters (Fritz et al., 2020).

To apply the elbow method using k-means, it is 
first necessary to perform the k-means steps for 
each k-value up to a chosen maximum number. 
Then, the sum of the intra-cluster squared error, 

or Within-Cluster-Sum of Squared Errors (WSS), 
is calculated for each clustering obtained by the 
k-means result. The WSS consists of the sum of 
the square of the euclidean distances from each 
observation to the centroid of the cluster to which 
it belongs.

Consequently, a graph can be created that 
presents the WSS for each value of k. So it is 
possible to observe the point k at which the curve 
presents a “fold”, like an elbow, and it can be 
inferred that the difference between the WSS of 
k and k+1 would not provide substantial gains to 
clustering.

The next step is to create the daily transition 
matrices of states, P. Transition matrices are 
composed of the transition probabilities pi,j 
between a state i and a state j between a period n 
and n+1 (Chung, 1960).

In this step, based on Melo (2022) and Ma et al. 
(2020), the transition probabilities are calculated 
by the ratio between the number of occurrences 
of transitions from state i to state j and the 

3.2.2   Creating State Transition Matrices

The transition probabilities and transition matrices 
are represented by (2) and (3), respectively.

total occurrences of transitions from state I, as 
represented by (4).
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To analyze the properties of the transition 
matrices, three measures of interest were 
calculated: Stationary distribution (π) - represents 
the distribution of states in which the chain will 
stabilize, satisfying the equations (5) and (6); 
Recurrence time (mii) - the expected number of 
periods for a system in state i to return to that 

Interpreting the above concepts, the measures 
presented are important to assist in analyzing the 
behavior of the Markov Chains model when the 
process stabilizes. With a stationary distribution, 
it is possible to identify the most frequent states 
of the system, where the process is most likely 
to be in the future. The recurrence time allows us 
to understand, for example, the average time to 
return to a state of maximum or minimum energy 

Finally, in the post-processing phase, the analysis 
and evaluation of the results obtained in the 
previous phase were carried out, with the objective 
of analyzing the characteristics of the generation 
of the two plants in the four climatic seasons and 
in regions of Brazil with different solar incidences. 
In this phase, the main purposes were: to identify 
the most frequent states of each season; to 
compare the recurrence times of the most extreme 
power generation states; and to compare the first 

3.2.3   Obtaining the results

state again, as in the equation (7); First passage 
time (mij) - The number of periods expected for a 
system in state i to first passage through state j, as 
in the equation (8) (Chung, 1960).

generation, while the first passage time would 
indicate the average transition time between 
these two states.

3.3. Post-processing

passage times between the states of highest and 
lowest power generation of each climatic season.
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4. DISCUSSION AND PRESENTATION OF RESULTS

In this chapter, the results of the methodology’s 
application are presented for the two plants 
individually, starting with the Nova Olinda Complex 
(PI) and, later, addressing the Guaimbê Complex 
(SP). Finally, the results of the two plants are 
compared. All the computational steps in this 

When testing the stationarity of the time series of 
the Nova Olinda Complex in the analyzed period, 
the result obtained was a p-value lower than 0.01, 
i.e., the null hypothesis that the time series would 
not be stationary is rejected. Thus, it is concluded 
that the time series is stationary and, therefore, the 
installed capacity is constant, which is fundamental 
for the Markov Chain modeling performed in this 
work. The stationarity of the time series in the 
period can be seen in Figure 3, which represents 
the average daily generation per month. In addition, 
the series presents considerable volatility and 
annual seasonality, with higher energy generation 

4.1. Nova Olinda Complex (Piauí)

chapter were performed in the R® programming 
language (R Development Core Team, 2009).

4.1.1   Pre-processing

4.1.1.1   Collection, analysis and treatment of data

in the months of July, August, and September 
and lower generation in the months of December, 
January, February, and March, while the other 
months assume intermediate energy generation 
values. It is possible to notice greater similarities 
in the data in the months of the same climatic 
season. Due to this observation, an opportunity is 
identified to model the time series by subdividing it 
into four subsets, one for each climatic season, for 
a better representation of the data in each period.

Figure 3 - Average daily generation - Nova Olinda Complex.

Source: Based on data from ONS (2022).
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4.1.2   Processing

4.1.2.1   Discretization of the series via k-means

The discretization of the photovoltaic time series 
was performed individually for each climatic 
season, so that the number of clusters and 
the values for the centroids were better suited 
specifically to each of the subsets.

The first step in the execution was to create a 
function that would calculate the k-means for 
values of k from 1 to 20. The maximum number 
of 20 clusters was chosen because it was verified 
that this is a sufficient amount to represent the 
data. The second step was to create a function 
that returned WSS for each of the 20 clusters. 
The third step was to apply the previously created 
functions to each of the subsets created. The 
fourth step was the application of the elbow 

Table 1 shows that winter has the highest daily 
average of energy generation in the Nova Olinda 
Complex in Piauí, with 1,572.87 MWh/day. 
Meanwhile, the summer has a daily average of 
32% lower than that of winter, with 1,066.39 
MWh/day, probably due to a higher number 
of cloudy days in this period of the year, which 
reduces the average daily solar radiation in the 

 Table 1: Measures of daily energy generation - Nova Olinda Complex.

 Table 2: Ideal number of clusters - Nova Olinda Complex.

 Table 3: Centroids of the states - Nova Olinda Complex.

region of the plant. Furthermore, it is also possible 
to note that winter has the lowest standard 
deviation, while spring, the second season with 
the highest average energy generation, has the 
highest standard deviation, therefore, a greater 
dispersion of data.

method. With the results of the WSS calculation, 
a list was created that contained the ratio between 
the WSS of a number k and k+1 of clusters for 
k=1 to k=19. Then, for each of the subsets, the 
k-value of clusters in which the calculated ratio was 
greater than 0.90 was identified, i.e., the number 
of clusters necessary for the reduction of the sum 
of the intra-cluster squared error, when including a 
new cluster, to be less than 10%, which would not 
justify the addition.

Thus, the k-means result for each of the subsets 
found the ideal number of clusters (Table 2) and 
centroid values (Table 3).
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4.1.2.2   Creating State Transition Matrices

4.1.2.3   Obtaining the results

In this step, the transition matrices of the Nova 
Olinda Complex (Figure 4) were constructed from 

All the transition matrices created were classified 
as irreducible and ergodic, important properties for 
the Markov Chain to have a stationary distribution. 

Figure 4 - Transition matrices - Nova Olinda Complex.

Table 4: Stationary distribution - Nova Olinda Complex.

Then, stationary distributions (Table 4), recurrence 
times (Table 5), and first passage times (Figure 5) 
were calculated.

the transition frequencies between the states for 
each subset.
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Table 5: Recurrence time - Nova Olinda Complex.

Figure 5 - First passage time - Nova Olinda Complex.
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4.1.3   Post-processing

4.1.3.1   Evaluation and interpretation of results

After obtaining the model’s results, it becomes 
possible to analyze and interpret the generated 
values and better understand the behavior of the 
daily photovoltaic power generation time series, 
mainly from the stationary distributions, recurrence 
times and first passage times.

From the stationary distribution, in Table 4, it 
is observed that the system presents higher 
probabilities for the states of intermediate 
generation values in the summer and spring 
seasons. Also, the probabilities decay little by 
little and in a similar way for the lower and higher 
extreme states. Another way to analyze it is 
by the time of recurrence of the states in Table 
5. In both seasons, the recurrence times of the 
extreme states are significantly higher compared 
to the central states and very close to each other. 
Analyzing the extreme states, in the summer, 
states 1 (289 MWh) and 11 (1,819 MWh) have a 
recurrence of 25 and 29 days, respectively, while 
states 1 (309 MWh) and 8 (1,969 MWh) in spring 
have a recurrence of 18 and 19 days, respectively. 
Consequently, the tendency is for the system 
to remain in medium-generation states and the 
extremes to be rarer, with lower expectations 
of low or high generation in a day, especially in 
the summer, whose recurrence times of extreme 
states are even longer.

Autumn, on the other hand, has a higher probability 
of being in the central and upper states, with lower 
probabilities in states of lower energy generation, 
comparatively. At this season, the two states with 
the highest power generation, states 11 (1,582 
MWh) and 12 (1,709 MWh), have recurrence 
times of 9 and 13 days, respectively. Meanwhile, 
the recurrence times of the two lowest-generation 
states, states 1 (307 MWh) and 2 (624 MWh), 
are 37 and 22 days, respectively. In addition, the 
recurrence time of state 1 of autumn is the longest 
among all states of all seasons, i.e., autumn 
presents the longest average period for the system 
to return to low levels of power generation. Hence, 
it appears that the system has a tendency towards 

higher states with a lower risk of low generation.
Furthermore, by investigating the first passage 
times of summer and spring, it is possible to 
analyze that the time to leave the state of lowest 
energy generation and reach the state of highest 
generation for the first time is longer than the 
reverse. For example, the first passage time from 
state 1 (309 MWh) to state 8 (1,969 MWh) in the 
spring is 51 days, while the time from state 8 to 
state 1 is 30 days, approximately 40% shorter. 
Therefore, although the probabilities of the system 
being at each extreme are close, once the system 
is in a low-generation state, it will take longer 
to reach the higher-generation states in both 
seasons.

Meanwhile, when looking at winter, the first 
passage times between the two most extreme 
states, lower and upper, are close — 32 days from 
state 1 (875 MWh) to state 8 (1,945 MWh) and 
30 days from state 8 to state 1— although their 
recurrence times are quite different (20 days for 
state 1 and 11 days for state 8). It is interesting to 
note that the first passage times between states 
with more distant generation levels may be shorter 
than among others with closer generations. For 
example, the first passage time from state 2 
(1,209 MWh) to state 3 (1,407 MWh) is 11 days, 
while the time from state 2 to state 6 (1,720 MWh) 
is 8 days.
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By testing the stationarity of the time series of the 
Guaimbê Complex in the analyzed period, it was 
concluded that the time series is stationary and, 
therefore, the installed capacity is constant. The 
stationarity of the time series in the period can be 
seen in Figure 6, which represents the average 

Table 6 shows that spring has the highest daily 
average of energy generation in the Guaimbê 
Complex, with 752.92 MWh/day. Meanwhile, the 
summer has a daily average of 5% lower than 
that of spring, with 717.33 MWh/day, being the 
lowest average for the plant. Consequently, the 
low variability of energy generation between the 
seasons of the year is evident, with all values 

4.2. Guaimbê Complex (São Paulo)

4.2.1   Pre-processing

4.2.1.1   Collection, analysis and treatment of data

daily generation per month. In addition, the series 
has considerably lower volatility than that of the 
Nova Olinda Complex, with low variations in 
energy generation over the months.

being considerably close to the general average. 
Also, the standard deviation of the seasons also 
assumes close values.

 Table 6: Measurements of daily energy generation - Guaimbê Complex.
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4.2.2   Processing

4.2.2.1   Discretization of the series via k-means

The discretization of the photovoltaic energy time 
series for the Guaimbê Complex was performed 
with the same method as the Nova Olinda 
Complex, but in a totally independent way, using 

the k-means technique and the elbow method. 
The ideal number of clusters and centroid values 
are shown in Tables 7 and 8, respectively.

 Table 7: Ideal number of clusters - Guaimbê Complex.

 Table 8: Centroids of the states - Guaimbê Complex.

 Figure 7 - Transition matrices - Guaimbê Complex.

Thus, the transition matrices of states of the 
Guaimbê Complex were created, represented in 
Figure 7. 

Then, stationary distributions (Table 9), recurrence 
times (Table 10), and first passage times (Figure 8) 

4.2.2.2   Creating State Transition Matrices

4.2.2.3   Obtaining the results
were calculated.
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 Table 9: Stationary distribution - Guaimbê Complex.

 Table 10: Recurrence time - Guaimbê Complex.

 Figure 8 - First passage time - Guaimbê Complex.
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4.2.3   Post-processing

4.3   Comparison of results

4.2.3.1  Evaluation and interpretation of results

With the measurements of interest obtained for the 
Guaimbê Complex, the next step is to analyze the 
model’s characteristics for each of the seasons.

In summer, the stationary probability of the system 
being in the state of lower power generation is the 
lowest (2.27%), resulting in a recurrence time of 
44 days, that is, the occurrence of a state of low 
generation is extremely rare, and, once in this 
state, many transitions are expected for the return. 
Furthermore, state 2 (386 MWh) has the second-
lowest stationary probability at 7.47%, followed 
by state 8 (1,018 MWh) at 10.11%. The states 
with the highest probabilities are the higher power 
plants, and the state with the highest stationary 
probability is state 7 (909 MWh), with 19.86%.

Looking at autumn, the system has a higher 
probability of being stationary in the upper central 
states of power generation values in the seasons, 
with the probabilities gradually decreasing to 
the lower and upper extreme states. The two 
states with the longest recurrence times are the 
extremes, states 1 (244 MWh) and 9 (992 MWh), 
with 15 and 23 days, respectively. Winter, on the 
other hand, in the Guaimbê Complex, has higher 
stationary probabilities for the upper states and 
very low probabilities for the four states with lower 
energy generation. An interesting case is that the 
recurrence time of state 2 (324 MWh) is 38 days, 
which is approximately 40% longer than the time 
of state 1 (182 MWh) 27 days. In this way, the 
risk of the system being in low-generation states is 
lower, and there is an expectation of higher energy 
generations, comparatively.

Spring has more balanced stationary probabilities 
among its eight states, with the exception of state 
1 (269 MWh), which has lower power generation 
and a probability of only 5%.

Analyzing the times of the first passage, it can 
be seen that, in the summer of the Guaimbê 
Complex, the time to leave the state of the highest 
generation to the state of the lowest generation is 
more than double the reverse. The first passage 
time from state 8 (1,018 MWh) to state 1 (234 
MWh) is 47 days, while from state 1 to state 8 
is 20 days. Hence, this characteristic is favorable 
to generation because the average time to have 
a low generation from a high generation is high. 
However, autumn and winter have first passage 
times with the reverse logic, it takes longer to move 
from a state of lower generation to one of greater 
generation. This analysis is important because, in 
low-generation situations, the expected time to 
return to high-generation is longer. In the autumn, 
the first passage time from state 1 (244 MWh) to 
state 9 (992 MWh) is 38 days, and the reverse is 
23 days. Meanwhile, in winter, the time from state 
1 (182 MWh) to state 11 (983 MWh) is 62 days, 
and the reverse is 30 days.

Analyzing the time series of the Nova Olinda 
and Guaimbê complexes, the differences in the 
variability of the average photovoltaic energy 
generation throughout the year are evident since 
Nova Olinda presents seasonality with higher 
average generation in winter and lower in summer, 
which is the wet period, while the averages of 

Guaimbê are closer in all climatic seasons. In the 
case of Nova Olinda, the reason for subdividing 
the series by the climatic seasons to perform the 
modeling is more evident, however, although the 
Guaimbê Complex presents more homogeneous 
monthly averages, the results for the stationary 
distributions and recurrence and first passage 
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times were significantly different in each season, 
as previously analyzed. Thus, the subdivision by 
climatic season proved to be relevant for both 
plants.

Another interesting fact is that the climatic 
seasons affect each region differently as well, with 
similarities between different seasons in the two 
regions. For example, the highest concentration 
of stationary probabilities in upper central states is 
a case present in summer and spring in the Nova 
Olinda Complex, but it also happens in the autumn 
in the Guaimbê Complex. On the other hand, the 
autumn of Nova Olinda is similar to the winter of 
Guaimbê because the states of lower generations 
have significantly lower stationary probabilities 
than the others and higher probabilities in the 
higher states. Meanwhile, Nova Olinda’s winter 
and Guaimbê’s spring are the seasons with the 
most balanced stationary probabilities between 
the states.

In addition, analyzing the first passage times, 
other similarities were found. The cases in which 
the first passage time from the state with the 

highest generation to the lowest was longer than 
the inverse were the autumn in Nova Olinda and 
the summer in Guaimbê. The opposite happened 
in the summer and spring in Nova Olinda and in 
the autumn and winter in Guaimbê. On the other 
hand, the winter of Nova Olinda and the spring 
of Guaimbê had the closest first passage times 
when comparing the most extreme states.

Finally, BES can use this analysis to assist in 
the country’s energy planning by calculating the 
probability of possible scenarios of low or high 
photovoltaic generation by region and climatic 
season. The detailed study of the characteristics 
of renewable sources brings greater security to 
the supply of energy demand in the country.

Brazil has been going through a process of 
changing its energy matrix and increasing the use 
of renewable energies non-dispatchable. In this 
context, photovoltaic solar energy has stood out 
due to the significant growth of its share in the 
country. Hence, its characteristics of intermittency 
and random fluctuations have a greater impact on 
the national energy supply scenario. Therefore, 
the study of photovoltaic generation through 
modeling methods is relevant, and an opportunity 
to contribute to the literature was found through 
the present work.

This work studies the generation characteristics 
of two photovoltaic solar power plants located 
in regions with solar incidences of different 
magnitudes and seasonalities. The methodology 
used was based on Markov Chains. The time series 
were subdivided among the climatic seasons 
of the year. Then, the state transition matrices 

5. CONCLUSION

were created, and the results of the measures of 
interest, such as stationary distribution, recurrence 
time, and first passage time, were investigated. 
Consequently, it was possible to analyze the 
differences between the photovoltaic energy 
generation in the different seasons and regions. In 
this way, the objective of the work was achieved 
in a pertinent way.

Confirming the initial hypothesis, the results 
showed significant differences in solar energy 
generation between the regions and between the 
climatic seasons, which evidenced the relevance 
of the comparative study carried out. By analyzing 
and better understanding the specificities of each 
location and season, power plants and the Brazilian 
Electric System can plan more efficiently about 
energy generation, analyzing the probabilities of 
the occurrence of states of different generation 
values.
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