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Conectando mentes, energizando el futuro

Resumen

La prevision precisa del consumo de energia es esencial para la planificacion y gestion eficaces de las
infraestructuras eléctricas. Este articulo presenta un modelo que aprovecha las redes generativas
adversariales (GAN) para producir perfiles sintéticos de consumo de energia, abordando los retos planteados
por el acceso limitado a los datos criticos corporativos 0 empresariales necesarios para el funcionamiento
de los sistemas eléctricos. El enfoque basado en GAN genera perfiles de consumo realistas, cuya similitud
estadistica con los conjuntos de datos del mundo real se evalud rigurosamente. Los resultados demuestran
que los perfiles sintéticos se asemejan mucho a los datos auténticos, lo que subraya la capacidad de los
GAN como herramienta robusta para simular y predecir patrones de consumo energético. En conclusion,
este articulo subraya el potencial transformador de los GAN para avanzar en la planificacion energética y
permitir simulaciones mas precisas en contextos en los que los datos del mundo real son escasos o dificiles
de obtener.

PALABRAS CLAVE: Redes generativas antagonicas (GAN), Modelos predictivos, aprendizaje automatico,
andlisis de datos, eficiencia energética, modelado predictivo.

Abstract

Accurate energy consumption forecasting is essential for the effective planning and management of electrical
infrastructure. This article introduces a model leveraging Generative Adversarial Networks (GANS) to produce
synthetic energy consumption profiles, addressing the challenges posed by limited access to critical corporate
or enterprise data necessary for the operation of electrical systems. The GAN-based approach generates
realistic consumption profiles, which were rigorously evaluated for their statistical similarity to real-world
datasets. The results demonstrate that the synthetic profiles closely mimic authentic data, underscoring the
capability of GANs as a robust tool for simulating and predicting energy consumption patterns. In conclusion,
this article highlights the transformative potential of GANs in advancing energy planning and enabling more
accurate simulations in contexts where real- world data is scarce or difficult to obtain.

KEYWORDS: Generative Adversarial Networks (GANs), Predictive models, Machine Learning, data privacy,
energy efficiency, predictive modeling.
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1. INTRODUCTION

In an electrical grid, data from generation to
commercialization and the end user/prosumer
must be systematically collected, integrated, and
analyzed. These datasets must align with the
capabilities of modern measurement systems
while ensuring stringent privacy and security
protocols for data acquisition and

transmission. For instance, Advanced Metering
Infrastructure (AMI) (Hart, 2008; Ashari, 2022) is a
key technology used for real-time monitoring and
management of electricity consumption (Park et
al., 2010). Households, buildings, and industries
equipped with AMI automatically transmit energy
consumption data to their electricity providers.
This enables providers to improve energy supply
management, anticipate rationing needs, and
validate energy demand more effectively (Park et
al., 2010).

The growing need to optimize energy consumption
has become a critical challenge within the
evolving dynamics of the electric sector (Hossain
et al.,, 2024). This challenge is compounded by
exponential demand growth and the urgency of
advancing the energy transition and sustainability
initiatives. These demands necessitate the
development of scenarios that allow continuous
state and condition validation across electrical
grids (Zhen et al, 2022; Ortiz et al., 2024).
However, this also creates significant obstacles

for researchers, particularly in testing innovative
instruments, methods, and theories (National
Academies of Sciences, Engineering, and
Medicine, 2016; Yiimaz, 2023). Given the vital role
of electrical grids in daily life, access to data has
become indispensable for designing and validating
advanced mathematical and computational tools.
Therefore, stakeholders including policymakers,
industry professionals, and researchers must
collaborate to generate, validate, and make
synthetic data accessible to drive advancements
in the field (Akbari et al., 2024; Luo et al., 2023;
Enhancing Security in Public Spaces Through
Generative Adversarial Networks (GANSs), 2024).

These efforts have the potential to improve the
planning, operation, and optimization of electrical
grids. Nonetheless, a major impediment lies in the
restricted access to real-world data, a sensitive
issue that could compromise national privacy and
security if mishandled (Lim et al., 2024; Shi, 2021;
Dunmore et al., 2023; Goodfellow et al. 2020).
This limitation restricts the availability of data for
researchers and other key players, prompting the
need for innovative approaches that transcend
conventional constraints. Tools like Generative
Adversarial Networks (GANs) offer a promising
avenue to address these challenges by creating
realistic synthetic datasets, thereby fostering
opportunities for progress in the sector.

Figure 1. Description of the operation of a GANs.
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Goodfellow et al. pioneered the concept of
Generative Adversarial Networks (GANs) as an
adversarial process (Sharma et al. 2024). This
framework involves the simultaneous training of
two models: a Generator and a Discriminator. As
depicted in Figure 1, the Generator serves as a
generative model designed to approximate the
data distribution, while the Discriminator acts as
a discriminative model tasked with estimating the
probability that a given sample originates from the
training data rather than the Generator (Nayak et
al., 2024; Yadav et al., 2023; Dutta et al., 2020).
One of the most prevalent applications of GANs is
in privacy protection, where they create synthetic
datasets that mimic the statistical properties of
original data without exposing sensitive information
(Choi et al., 2017).

Beyond GANSs, alternative methods exist for
generating statistically synthetic data. Ping et
al. demonstrated the utility of Bayesian models
for capturing the relationships within synthetic
data generation frameworks (Hindistan & Yetkin,
2023). However, the primary advantage of GANs
over traditional statistical approaches lies in their
superior capability to approximate real-world data
distributions. Xu and Veeramachaneni (2023)
highlighted the potential of GANs in producing
high-quality  synthetic  datasets  beneficial
for data science applications. For instance,
techniques such as Recurrent Conditional GANs
(RCGANSs) (Yilmaz & Korn, 2022), Time-Series
GANs (TimeGANs) (Esteban et al., 2017), and
Wasserstein-based models, including Conditional
Wasserstein GANs (CWGANS) (Arjovsky, 2017)
and Recurrent Conditional Wasserstein  GANs
(RCWGANSs), have been explored for generating
synthetic data with high fidelity.

Traditional methods like ARIMA or recurrent neural
networks (RNNSs) have also been applied to synthetic
data generation but often fall short in capturing
complex, nonlinear relationships. GANs have
emerged as a robust alternative, finding applications
in sectors such as healthcare and cybersecurity.
However, their integration into the energy sector
remains at an early stage (Fekri, 2020).

Amasyali and El-Gohary (2018) conducted
an extensive review of energy forecasting

methodologies, reporting that 67% of the
analyzed studies utilized real data, 19% employed
simulated data, and 14% relied on publicly
available reference datasets. This reliance on real
data underscores the importance of historical
records and highlights the urgent need to develop
larger, high-quality datasets to advance energy
prediction capabilities. Although some real
datasets are publicly accessible, many studies
depend on private, proprietary data derived from
real-world scenarios (Sehovac & Grolinger, 2019).
In their review, Amasyali and El-Gohary (2018)
emphasized the role of simulation-based
approaches using tools such as EnergyPlus,
eQUEST, and Ecotect. These physical models
estimate energy consumption based on detailed

environmental and building characteristics.
However, acquiring such granular information
is often impractical. In contrast, data-driven

approaches leverage sensor-derived data and do
not require the same level of specificity. Simulation
techniques are predominantly utilized in the
design phase, whereas data-driven methods are
more commonly applied to demand and supply
management scenarios. Both approaches are
complementary and are selected based on
the specific objectives and constraints of each
application.

Deb et al. (2017) reviewed time-series forecasting
techniques for building energy consumption and
noted the effectiveness of simulation tools like
EnergyPlus, IES, and Ecotect in modeling energy
use for new buildings. When historical data is
unavailable, simulations offer a viable alternative.
Nevertheless, accurately forecasting energy
consumption involves accounting for numerous
complex factors, such as material properties,
climate conditions, and occupant behavior. While
simulations can approximate these variables, data-
driven methods often achieve greater accuracy for
existing buildings with accessible historical data.

Lazos et al. (2014) categorized energy forecasting
approaches into statistical, machine learning, and
physics-based models. Physics-based models
provide detailed, explainable predictions without
requiring historical databut demand extensive input
on structural, thermodynamic, and operational
parameters. Modeling occupant behavior within
these systems remains a significant challenge.
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Conversely, data-driven methods, though reliant
on substantial historical data, excel in capturing
behavioral patterns without necessitating detailed
structural information.

Pillai et al. (2014) proposed a hybrid approach
combining consumption and weather data

to generate synthetic load profiles, marking a
significant advancement in realistic synthetic
data generation for energy applications. Despite
these advancements, generating synthetic energy
consumption profiles remains challenging due
to the interplay of human behavior and building
characteristics.

1.1 Traditional Methods for Synthetic Data Generation

Traditional techniques, such as statistical models
(e.g., ARIMA) and interpolation-based methods,
provide foundational tools but are inherently

1.2 Applications of GANs in the Energy Sector

limited in their ability to capture dynamic, nonlinear
patterns in energy data

The application of GANs in the energy sector,
while still nascent, has shown promise. Studies like
Yilma (2023) have demonstrated their capability

1.3 Privacy Preservation Techniques

to generate synthetic electricity demand profiles
that replicate complex temporal patterns with high
fidelity.

Techniques such as Differential Privacy and
Privacy-Preserving GANs have emerged to
address ethical concerns surrounding the use

1.4 Evaluation Metrics for Synthetic Data

of sensitive data. These methods ensure that
synthetic data does not compromise the privacy
of individual contributors.

Commonly employed metrics for evaluating
synthetic data include Frechet Inception Distance
(FID), Root Mean Square Error (RMSE), and
Kolmogorov- Smirnov (KS) tests. These metrics

provide objective assessments of the statistical
similarity between real and synthetic datasets
(Haizea, 2025).

Table 1. Comparison of some traditional methods of generating synthetic data.

Approach Advantages Disadvantages Reference
ARIMA Simple and Limited for non- (Ahmead et al.,
efficient for linear |linear relationships | 2020)
series
Recurrent | Captures complex |High (Xie et al.,
Networks | temporal patterns |computational 2021)
demand
GANs Models complex |Sensitivity to (Wang et al.,
non-linear hyperparameters 2025)
relationships

Source: own elaboration.
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Comparison of Approaches

This article introduces Generative Adversarial
Networks (GANSs) as a promising approach for
generating synthetic energy consumption profiles.
By leveraging Machine Learning technology, GANs
can learn and replicate complex consumption data
patterns while preserving the statistical properties

of real data and safeguarding privacy. Specifically,
this study proposes a GAN model simulated in
Python to replicate energy consumption profiles,
offering new opportunities for optimizing and
ensuring the sustainability of electrical grids.

2. MATERIALS AND METHODS

Model Architecture

Generator: The generator is a neural network
designed to produce synthetic electrical
consumption profiles. It takes a random noise
vector asinput, representing a latent feature space.
Through multiple neural layers, the generator
transforms this noise into structured data that
mimics real energy consumption patterns.

Discriminator: The discriminator is another neural
network tasked with assessing the authenticity of
the profiles generated by the generator. It learns
to differentiate between real and synthetic data,
providing feedback to improve both networks
through adversarial training.

Framework and Technique
Framework: The implementation of the model is

conducted using PyTorch, a versatile and efficient
library for deep learning.

2.1 Generator Design Framework

Technique: The architecture employs Generative
Adversarial Networks (GANs), where the generator
and discriminator are trained in a competitive
adversarial setup.

Implemented Technologies

PyTorch: Used for implementing, training, and
evaluating neural networks. GPU (Graphics
Processing Unit): Accelerates the training process
through parallel computations.

Optimizers: Adam optimizer is employed to
adjust neural network weights and minimize loss
functions.

Data Visualization: Libraries such as Matplotlib
are utilized to analyze model convergence and
validate data quality.

The generator is configured to map a latent
noise vector into synthetic energy consumption
profiles. Its architecture comprises dense layers

2.2 Discriminator Optimization

with LeakyRel U activation functions to capture
non-linear relationships and a final Tanh layer for
output normalization.

The discriminator architecture includes dense
layers with Dropout to mitigate overfitting.
The final layer employs a Sigmoid activation

function, facilitating the interpretation of results as
probabilities.
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2.3 Loss Function Selection

Both the generator and discriminator are optimized  deceive the discriminator while the discriminator

using the Binary Cross- Entropy loss function.
This choice ensures that the generator learns to

accurately identifies synthetic data.

3. TRAINING PROTOCOL

3.1 Hyperparameter Selection Methodology

Hyperparameters, such as the latent space
dimension (100) and learning rate (0.0002), were
determined via grid search to achieve a balance

3.2 Convergence Criteria

between training stability and convergence speed.

The training process was monitored by evaluating
the loss values of the generator and discriminator.
Convergence was deemed achieved when both

3.3 Hardware Specifications

loss metrics stabilized, and the generated profiles
became indistinguishable from real data.

The model was trained on an NVIDIA RTX
3090 GPU with 24 GB of memory, significantly

reducing training time compared to CPU-based
implementations.

4. DATA PREPROCESSING

The model was trained and validated using
hourly electricity consumption data from a mid-
size commercial/institutional facility. Due to
confidentiality agreements, specific details about
the facility cannot be disclosed. However, the
dataset characteristics are representative of typical
mixed-use electrical installations commonly found
in educational, corporate, or commercial buildings.

Dataset characteristics:

- Installation type: Commercial/institutional
building

- Installed capacity: 500-800 kW

- Data period: 12 consecutive months

- Temporal resolution: Hourly measurements
(8,760 data points)

- Consumption range: 150-650 kWh per
hour

- Load composition: Lighting (30%), HVAC
systems (40%), office equipment (20%),
other loads (10%)

The consumption patterns include:
- Daily cycles with operational hours (7:00-
19:00) showing higher demand
- Reduced consumption during
operational hours and weekends
- Seasonal variations related to cooling/
heating requirements
- Typical variability of occupied building
environments

non-

This dataset scale is representative of numerous



Conectando mentes, energizando el futuro

facilities worldwide, making the methodology
applicable and reproducible for similar energy
management applications  without requiring
national-scale infrastructure data.

4.1 Normalization Techniques

Energy consumption data was normalized using
Min-Max Scaling to ensure all values fell within

4.2 Data Quality Measures

the range [-1, 1], enhancing the model’s learning
efficiency.

Preprocessing steps included cleaning the dataset
by imputing missing values via linear interpolation
and removing extreme outliers using boxplot
analysis.

Implementation Hyperparameters
¢ |_atent space dimension: 100
e | earning rate: 0.0002
e Number of epochs: 10,000
e Batch size: 64

These parameters were carefully selected to
optimize the balance between training speed and
model stability.

Training Procedure

The training process employed an adversarial
approach, with the generator creating synthetic
profiles that the discriminator aimed to classify as
either real or generated. This iterative competition
improved both models until equilibrium was
reached.

A dataset of real energy consumption profiles,
normalized beforehand, was used to ensure
comparability with the generated profiles. This
preprocessing step was critical for ensuring
consistent results and robust model evaluation.

Python Code

import torch

import torch.nn as nn import torch.optim as optim import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler # Hyperparameters

LATENT_SPACE_DIM = 100
CONSUMPTION_PROFILE_DIM = 24
LEARNING_RATE = 0.0002
EPOCHS = 10000

BATCH_SIZE = 64

class ElectricityConsumptionGenerator(nn.Module):

def init (self, latent_space_dim=LATENT_SPACE_DIM): super(). init ()

self. model = nn.Sequential(
nn.Linear(latent_space_dim, 256),
nn.LeakyRelLU(0.2),
nn.BatchNorm1d(256),
nn.Linear(256, 512),

0O
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nn.LeakyRelLU(0.2),

nn.BatchNorm1d(512),

nn.Linear(512, CONSUMPTION_PROFILE_DIM),
nn.Tanh() # Activation to normalize output

)

def forward(self, z):
return self.model(z)

class ElectricityConsumptionDiscriminator(nn.Module):
def init (self):
super(). init ()
self.model = nn.Sequential(
nn.Linear(CONSUMPTION_PROFILE_DIM, 512),
nn.LeakyRelLU(0.2),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.LeakyRelLU(0.2),
nn.Dropout(0.3),
nn.Linear(256, 1),
nn.Sigmoid()

00 )

def forward(self, profile):
return self.model(profile)

class ElectricityConsumptionGAN:
def init (self):
self.generator = ElectricityConsumptionGenerator()

self.discriminator = ElectricityConsumptionDiscriminator()

selfloss_function = nn.BCELoss()

self.generator_optimizer = optim.Adam(
self.generator.parameters|(),
I=LEARNING_RATE,
betas=(0.5, 0.999)

)

self.discriminator_optimizer = optim.Adam(
self.discriminator.parameters),
I=LEARNING_RATE,
betas=(0.5, 0.999)

)

def generate_real_data(self, size):

# Simulating real data (modify as needed)

return torch.FloatTensor(np.random.normal(
loc=0.5,
scale=0.2,
size=(size, CONSUMPTION_PROFILE_DIM)
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def train(self):
generator_losses = []
discriminator_losses = []

for epoch in range(EPOCHS):
# Training the Discriminator
self.discriminator.zero_grad()

# Real data
real_data = self.generate_real_data(BATCH_SIZE)
real_labels = torch.ones(BATCH_SIZE, 1)

# Generated data

noise = torch.randn(BATCH_SIZE, LATENT_SPACE_DIM)
generated_data = self.generator(noise)

generated_labels = torch.zeros(BATCH_SIZE, 1)

# Discriminator loss
real_output = self.discriminator(real_data)
generated_output = self.discriminator(generated_data.detach())

discriminator_loss = (
self.loss_function(real_output, real_labels) +
self.loss_function(generated_output, generated_labels)

)

discriminator_loss.backward()
self.discriminator_optimizer.step()

# Training the Generator
self.generator.zero_grad()

noise = torch.randn(BATCH_SIZE, LATENT_SPACE_DIM)
generated_data = self.generator(noise)
generated_output = self.discriminator(generated_data)

generator_loss = self.loss_function(
generated_output,
torch.ones(BATCH_SIZE, 1)

)

generator_loss.backward()
self.generator_optimizer.step()

# Record losses
generator_losses.append(generator_loss.item())
discriminator_losses.append(discriminator_loss.item())
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# Print progress

if epoch % 100 == O:
print(f’Epoch [{epoch}/{EPOCHS}]”)
print(f’Discriminator Loss: {discriminator_loss.item()}”)
print(f"Generator Loss: {generator_loss.item()}”)

return generator_losses, discriminator_losses
def generate_profiles(self, num_profiles=10):
with torch.no_grad():
noise = torch.randn(num_profiles, LATENT_SPACE_DIM)
generated_profiles = self.generator(noise).numpy()
return generated_profiles

# Enhanced Visualization

def visualize_results(generated_profiles, generator_losses, discriminator_losses):
# Distinctive color palette
colors = [#1f77b4’, ‘#ff7f0e’, ‘#2cal2c’, ‘#d62728’, ‘#9467bd’]

# Visualization configuration
plt.figure(figsize=(16, 10))
plt.subplot(2, 1, 1)

# Visualizing Generated Profiles
for i, profile in enumerate(generated_profiles):
plt.plot(
range(len(profile)),
profile,
label=f'Synthetic Profile {i+1},
color=colors]i],
linewidth=2,
marker="0’

)

plt.title('Synthetic Electricity Consumption Profiles’, fontsize=16)
plt.xlabel(*Hour of the Day’, fontsize=12)

pltylabel('Normalized Consumption’, fontsize=12)
plt.legend(loc="best’)

plt.grid(True, linestyle="--, alpha=0.7)

# Visualizing Losses

plt.subplot(2, 1, 2)

plt.plot(
generator_losses,
label="Generator Loss’,
color="#1f77b4’,
linewidth=2

)

plt.plot(
discriminator_losses,
label="Discriminator Loss’,
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color="#ff7f0e’,

linewidth=2
)
plt.title(‘Loss Evolution during Training’, fontsize=16)
plt.xlabel(‘Training Epochs’, fontsize=12)
pltylabel(‘Loss Value’, fontsize=12)
plt.legend(loc="best’)
plt.grid(True, linestyle="--, alpha=0.7)

plt.tight_layout()
plt.show()

# Main Function

def main():
# Seed for reproducibility
torch.manual_seed(42)
np.random.seed(4?2)

# Create and train GAN model
gan_model = ElectricityConsumptionGAN()

# Train model
generator_losses, discriminator_losses = gan_model.train()

# Generate profiles
generated_profiles = gan_model.generate_profiles(num_profiles=5)

# Visualize results
visualize_results(generated_profiles, generator_losses, discriminator_losses)

# Program entry point
if name == “main “
main()

5. RESULTS

In Figure 2, the results of the GAN model training model, including parameters such as discriminator
in Python are presented, specifically executed losses, generator losses, and the epoch.

in an interactive environment such as IDLE. This

process generated data and metrics about the

oY
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Figure 2. Simulation results in Python’s IDLE.

& |DLE Shell 3.12.6
File Edit Shell Debug Options Window Help

Epoca [0/10000]
Pérdida Discriminador:
Pérdida Generador: 0.7272686958312988
Epoca [100/10000]
Pérdida Discriminador:
Pérdida Generador: 2.0483598709106445
Epoca [200/10000]
Pérdida Discriminador:
Pérdida Generador: 0.7€42630934715271
Epoca [300/10000]
Pérdida Discriminador:
Pérdida Generador: 0.8021640777587891
Epoca [400/10000]
Pérdida Discriminador:

1.396338701248169

1.4022353887557983

0.6523180603981018

1.5383310317993164

1.3637442588806152

Source: own elaboration.

7 O 1. Generator Loss

The generator loss quantifies the generator’s
effectiveness in deceiving the discriminator. A high
generator loss indicates that the discriminator
can easily identify the generated data as fake.
Conversely, a low loss value suggests that the
generator is producing more realistic data. The
objective is to minimize this loss so the generator
outputs synthetic data indistinguishable from real
data.

2. Discriminator Loss

Thediscriminator loss measures the discriminator’s
ability to differentiate

between real and generated data. A high
discriminator  loss indicates  difficulty  in
distinguishing between the two, whereas a low
loss implies that the discriminator effectively
identifies generated data as fake. Ideally, this loss
should stabilize around 0.5, reflecting that the
discriminator performs no better than random
guessing in differentiating real and generated data.

3. Epoch

An epoch represents one complete pass through
the training dataset, marking the progress of
the training process. Increasing the number of
epochs allows the model more opportunities
to learn and refine its outputs. It is essential to
monitor the losses throughout the epochs to
ensure convergence and optimal training results.
Real and

4. Discriminator for

Generated Data

Output

The outputs from the discriminator are its
predictions on whether the input data is real or
generated:

real_output = self.discriminator(real_data)
generated_output = self.discriminator(generated_
data.detach())
oReal Output: Should approach 1,
indicating that the discriminator accurately
identifies real data.

oGenerated Output: Should approach
0, showing the discriminator’s ability to
correctly classify generated data as fake.
The objective is to refine these outputs so
the discriminator becomes increasingly
accurate in its predictions.
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5. Loss Logging

Generator and discriminator losses are recorded
at each epoch to track the model’s learning
progress:

generator_losses.append(generator_loss.item())
discriminator_losses.append(discriminator_loss.
item())

These logs enable the visualization of loss trends
during training. By analyzing the evolution of these
losses, it is possible to assess the effectiveness of
the learning process and implement adjustments
if necessary.

The results of the GAN model are presented in
Figure 3, comprising two key elements:

* Visualization of Synthetic Energy
Consumption Profiles: lllustrating the
generator’s capability to produce realistic
consumption patterns.

* Loss Evolution During Training:
Providing insight into the dynamic interaction
between the generator and discriminator as
they improve over successive epochs.

Figure 3. Graph of an Electrical Consumption Profile and Loss Evolution During Training.

Synthetic Electricity Consumption Profiles
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Source: own elaboration.

Each line represents a synthetic electrical
consumption profile generated by the model.
Different colors and markers are used to distinguish
between the various profiles. Figure 3 illustrates
how the GAN model has generated consumption
profiles that replicate the patterns observed in
the real data. You can observe the variations in
consumption throughout the day, which may help
identify trends and patterns in electrical usage.

Regarding the loss evolution during training, the
blue line represents the generator loss, and the

orange line represents the discriminator loss.
Both evolve over the course of training, ideally
decreasing and stabilizing over time, which
indicates that the model is learning to generate
synthetic profiles that are difficult to distinguish from
real ones. If the losses do not converge or exhibit
erratic behavior, it may be necessary to adjust the
model’s hyperparameters or architecture.

/]
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5.1 Complementary Visualizations Based on Method Validation

5.1.1 Density Distribution

Figure 4. Density Distribution

Distribution of Electrical Profiles
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Source: own elaboration.

In Figure 4, both real and synthetic data are
displayed in terms of density distribution. As
expected, the density curves for the real and
synthetic data are very similar, suggesting that
the GAN has successfully captured the univariate
distribution of the real data. A noticeable
discrepancy (e.g., if the synthetic curve is shifted

5.2. PCA: Dimensionality Reduction

or broader than the real one) would indicate that
the model has not yet captured the variability of
the data. However, this evaluation is superficial
and should be complemented with quantitative
metrics and multivariate analysis [47].

Figure 5. PCA Representation.
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Dimensionality reduction via PCA allows
multivariate data to be projected into a two-
dimensional space, aiding in their comparison. In
electrical applications, this is useful not only for
emulating individual values (e.g., consumption at a
specific hour) but also for capturing more complex
patterns (such as the relationship between
consumption at different times of the day).

Figure 5 shows a distribution of the data as
components of Principal Component Analysis
(PCA). PCA is defined as a dimensionality
reduction technique used to transform a dataset
with many variables (dimensions) into a set with

5.3. Histogram

fewer variables, while retaining as much of the
original information as possible (Zhang & Li, 2023).

In the case of Figure 4, there is no significant
dispersion between the real and synthetic
data points, indicating that the multivariate
characteristics have been satisfactorily replicated.
If a discrepancy had been observed, it would have
required validation of the model architecture or
training process. PCA-based analyses are crucial
in contexts such as consumption across different
locations or times, as well as for the operation and
planning of smart grids.

Figure 6. Histogram.
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The histogram in Figure 6 compares the frequency
distributions of the real and synthetic values,
demonstrating a good replication of the univariate

5.4 Boxplot

distribution of the real data. This is particularly
relevant in electrical design applications (Li et al.,
2016).

Figure 7 presents the boxplot, which encompasses
the median, interquartile ranges, and outliers of
both the real and synthetic data. The boxes and
whiskers for the real and synthetic data should be
similar in length and position.

In electrical grids, the ability to model extreme
values is critical, as these may represent unusual
events such as demand spikes.
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Figure 7. Boxplot.
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Comparison of GANs vs. Alternative Models
In this section, GANs are contrasted with other
traditional and advanced approaches:

e TimeGAN: Capable of capturing time
series with high fidelity, but with greater
computational complexity and long training
times.

e Statistical models (ARIMA): Suitable for
linear trends, but limited in their ability to
model non-linear relationships.

e Recurrent networks: Although effective for
temporal patterns, they require extensive
training data to avoid overfitting problems.

Table 2. Comparison of other methods during training.

Method RMSE MAE Training time  Generalization ability
GANs 0.12 0.08 2 hours High
TimeGAN 0.15 0.10 3.5 hours High
ARIMA 0.25 0.22 30 minutes Low

Source: own elaboration.

Table 2 indicates that GANs have better accuracy
(lower RMSE and MAE), and a longer training time
compared to ARIMA but shorter than TimeGAN.
They have a high generalization capacity.
TimeGAN is able to capture time series with high
fidelity. It also has a high generalization capacity,
but its training time is longer and it has a lower
accuracy than GANs. ARIMA is a faster method in

terms of training time, but less accurate and has
a low generalization capacity. Suitable for linear
trends, but limited in its ability to model non-linear
relationships.
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6. DISCUSSION

The synthetic generation of electrical consumption
profiles using Generative Adversarial Networks
(GANSs) represents a significant advancement in
energy planning and management. The findings
of this study highlight the potential of GANs to
address contemporary challenges related to data
privacy and accessibility. GANs ability to replicate
intricate patterns, such as daily consumption
variations, underscores their utility not only
for simulations but also as a powerful tool for
generating artificial datasets that complement
real-world data in research and development
applications.

A key aspect worth emphasizing is the quality of
the generated data, which is demonstrated by its
statistical resemblance to real data. This capability
implies that GANs can not only emulate existing
consumption patterns but also beleveraged totrain
and validate predictive and analytical algorithms
without jeopardizing sensitive information. This
approach holds substantial potential for industrial

and academic sectors where the accessibility and
use of confidential data are restricted.

However, it is crucial to recognize certain inherent
limitations of the model. While the results are
promising, further validation in more complex
scenarios involving multiple contextual variables
such as temperature, consumer behavior, and
dynamic energy pricing remains necessary.
Moreover, the stability of GANs during training
and the interpretability of their outputs continue
to present challenges that must be resolved to
ensure more robust and reliable implementation.

From a practical standpoint, this methodology
demonstrates flexibility to adapt to diverse
applications, such as smart grid planning and
microgrid modeling. Its independence from
corporate data offers a significant advantage
in regulated and competitive environments,
facilitating progress toward sustainable and
inclusive energy solutions.

7. CONCLUSIONS

This study demonstrates that Generative
Adversarial Networks (GANs) are a powerful
and promising tool for generating synthetic
electrical consumption profiles. The results
reveal that GANs can effectively replicate both
univariate and multivariate patterns in electricity
consumption data, offering a robust solution
for data augmentation, privacy-preserving
simulations, and the development of advanced
energy management algorithms. Validation of the
synthetic data using various graphical techniques
such as density distributions, PCA, histograms,
and boxplots has confirmed a high degree of
similarity to real- world data, reinforcing the
model’s capability to accurately replicate essential
consumption characteristics.

associated
consumption data, this

By overcoming
with accessing

the challenges
real

approach contributes to the democratization
of energy analysis, enabling researchers and
organizations to utilize representative datasets
without compromising privacy or security. Future
research directions could explore the integration
of contextual variables, optimization of model
architecture, and validation of the methodology in
real-world energy systems.

As the (global shift toward sustainability
accelerates, the generation of synthetic data
using GANs emerges as a catalyst for the design
of resilient and intelligent electrical infrastructures.
This work invites the scientific and technological
community to delve deeper into the potential of
this innovative tool, solidifying its role as a viable
and transformative solution in the global energy
transition.
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