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La previsión precisa del consumo de energía es esencial para la planificación y gestión eficaces de las 
infraestructuras eléctricas. Este artículo presenta un modelo que aprovecha las redes generativas 
adversariales (GAN) para producir perfiles sintéticos de consumo de energía, abordando los retos planteados 
por el acceso limitado a los datos críticos corporativos o empresariales necesarios para el funcionamiento 
de los sistemas eléctricos. El enfoque basado en GAN genera perfiles de consumo realistas, cuya similitud 
estadística con los conjuntos de datos del mundo real se evaluó rigurosamente. Los resultados demuestran 
que los perfiles sintéticos se asemejan mucho a los datos auténticos, lo que subraya la capacidad de los 
GAN como herramienta robusta para simular y predecir patrones de consumo energético. En conclusión, 
este artículo subraya el potencial transformador de los GAN para avanzar en la planificación energética y 
permitir simulaciones más precisas en contextos en los que los datos del mundo real son escasos o difíciles 
de obtener.

Accurate energy consumption forecasting is essential for the effective planning and management of electrical 
infrastructure. This article introduces a model leveraging Generative Adversarial Networks (GANs) to produce 
synthetic energy consumption profiles, addressing the challenges posed by limited access to critical corporate 
or enterprise data necessary for the operation of electrical systems. The GAN-based approach generates 
realistic consumption profiles, which were rigorously evaluated for their statistical similarity to real-world 
datasets. The results demonstrate that the synthetic profiles closely mimic authentic data, underscoring the 
capability of GANs as a robust tool for simulating and predicting energy consumption patterns. In conclusion, 
this article highlights the transformative potential of GANs in advancing energy planning and enabling more 
accurate simulations in contexts where real- world data is scarce or difficult to obtain.

PALABRAS CLAVE: Redes generativas antagónicas (GAN), Modelos predictivos, aprendizaje automático, 
análisis de datos, eficiencia energética, modelado predictivo.

KEYWORDS: Generative Adversarial Networks (GANs), Predictive models, Machine Learning, data privacy, 
energy efficiency, predictive modeling.

Resumen

Abstract

Conectando mentes, energizando el futuro



60

1. INTRODUCTION

In an electrical grid, data from generation to 
commercialization and the end user/prosumer 
must be systematically collected, integrated, and 
analyzed. These datasets must align with the 
capabilities of modern measurement systems 
while ensuring stringent privacy and security 
protocols for data acquisition and

transmission. For instance, Advanced Metering 
Infrastructure (AMI) (Hart, 2008; Ashari, 2022) is a 
key technology used for real-time monitoring and 
management of electricity consumption (Park et 
al., 2010). Households, buildings, and industries 
equipped with AMI automatically transmit energy 
consumption data to their electricity providers. 
This enables providers to improve energy supply 
management, anticipate rationing needs, and 
validate energy demand more eff ectively (Park et 
al., 2010).

The growing need to optimize energy consumption 
has become a critical challenge within the 
evolving dynamics of the electric sector (Hossain 
et al., 2024). This challenge is compounded by 
exponential demand growth and the urgency of 
advancing the energy transition and sustainability 
initiatives. These demands necessitate the 
development of scenarios that allow continuous 
state and condition validation across electrical 
grids (Zhen et al., 2022; Ortiz et al., 2024). 
However, this also creates signifi cant obstacles 

for researchers, particularly in testing innovative 
instruments, methods, and theories (National 
Academies of Sciences, Engineering, and 
Medicine, 2016; Yilmaz, 2023). Given the vital role 
of electrical grids in daily life, access to data has 
become indispensable for designing and validating 
advanced mathematical and computational tools. 
Therefore, stakeholders including policymakers, 
industry professionals, and researchers must 
collaborate to generate, validate, and make 
synthetic data accessible to drive advancements 
in the fi eld (Akbari et al., 2024; Luo et al., 2023; 
Enhancing Security in Public Spaces Through 
Generative Adversarial Networks (GANs), 2024).

These eff orts have the potential to improve the 
planning, operation, and optimization of electrical 
grids. Nonetheless, a major impediment lies in the 
restricted access to real-world data, a sensitive 
issue that could compromise national privacy and 
security if mishandled (Lim et al., 2024; Shi, 2021; 
Dunmore et al., 2023; Goodfellow et al. 2020). 
This limitation restricts the availability of data for 
researchers and other key players, prompting the 
need for innovative approaches that transcend 
conventional constraints. Tools like Generative 
Adversarial Networks (GANs) off er a promising 
avenue to address these challenges by creating 
realistic synthetic datasets, thereby fostering 
opportunities for progress in the sector.

Figure 1. Description of the operation of a GANs.  

Source: own elaboration.
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Goodfellow et al. pioneered the concept of 
Generative Adversarial Networks (GANs) as an 
adversarial process (Sharma et al. 2024). This 
framework involves the simultaneous training of 
two models: a Generator and a Discriminator. As 
depicted in Figure 1, the Generator serves as a 
generative model designed to approximate the 
data distribution, while the Discriminator acts as 
a discriminative model tasked with estimating the 
probability that a given sample originates from the 
training data rather than the Generator (Nayak et 
al., 2024; Yadav et al., 2023; Dutta et al., 2020). 
One of the most prevalent applications of GANs is 
in privacy protection, where they create synthetic 
datasets that mimic the statistical properties of 
original data without exposing sensitive information 
(Choi et al., 2017).

Beyond GANs, alternative methods exist for 
generating statistically synthetic data. Ping et 
al. demonstrated the utility of Bayesian models 
for capturing the relationships within synthetic 
data generation frameworks (Hindistan & Yetkin, 
2023). However, the primary advantage of GANs 
over traditional statistical approaches lies in their 
superior capability to approximate real-world data 
distributions. Xu and Veeramachaneni (2023) 
highlighted the potential of GANs in producing 
high-quality synthetic datasets beneficial 
for data science applications. For instance, 
techniques such as Recurrent Conditional GANs 
(RCGANs) (Yilmaz & Korn, 2022), Time-Series 
GANs (TimeGANs) (Esteban et al., 2017), and 
Wasserstein-based models, including Conditional 
Wasserstein GANs (CWGANs) (Arjovsky, 2017) 
and Recurrent Conditional Wasserstein GANs 
(RCWGANs), have been explored for generating 
synthetic data with high fidelity.

Traditional methods like ARIMA or recurrent neural 
networks (RNNs) have also been applied to synthetic 
data generation but often fall short in capturing 
complex, nonlinear relationships. GANs have 
emerged as a robust alternative, finding applications 
in sectors such as healthcare and cybersecurity. 
However, their integration into the energy sector 
remains at an early stage (Fekri, 2020).
 
Amasyali and El-Gohary (2018) conducted 
an extensive review of energy forecasting 

methodologies, reporting that 67% of the 
analyzed studies utilized real data, 19% employed 
simulated data, and 14% relied on publicly 
available reference datasets. This reliance on real 
data underscores the importance of historical 
records and highlights the urgent need to develop 
larger, high-quality datasets to advance energy 
prediction capabilities. Although some real 
datasets are publicly accessible, many studies 
depend on private, proprietary data derived from 
real-world scenarios (Sehovac & Grolinger, 2019).
In their review, Amasyali and El-Gohary (2018) 
emphasized the role of simulation-based 
approaches using tools such as EnergyPlus, 
eQUEST, and Ecotect. These physical models 
estimate energy consumption based on detailed 
environmental and building characteristics. 
However, acquiring such granular information 
is often impractical. In contrast, data-driven 
approaches leverage sensor-derived data and do 
not require the same level of specificity. Simulation 
techniques are predominantly utilized in the 
design phase, whereas data-driven methods are 
more commonly applied to demand and supply 
management scenarios. Both approaches are 
complementary and are selected based on 
the specific objectives and constraints of each 
application.

Deb et al. (2017) reviewed time-series forecasting 
techniques for building energy consumption and 
noted the effectiveness of simulation tools like 
EnergyPlus, IES, and Ecotect in modeling energy 
use for new buildings. When historical data is 
unavailable, simulations offer a viable alternative. 
Nevertheless, accurately forecasting energy 
consumption involves accounting for numerous 
complex factors, such as material properties, 
climate conditions, and occupant behavior. While 
simulations can approximate these variables, data-
driven methods often achieve greater accuracy for 
existing buildings with accessible historical data.
Lazos et al. (2014) categorized energy forecasting 
approaches into statistical, machine learning, and 
physics-based models. Physics-based models 
provide detailed, explainable predictions without 
requiring historical data but demand extensive input 
on structural, thermodynamic, and operational 
parameters. Modeling occupant behavior within 
these systems remains a significant challenge. 
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Traditional techniques, such as statistical models 
(e.g., ARIMA) and interpolation-based methods, 
provide foundational tools but are inherently 

The application of GANs in the energy sector, 
while still nascent, has shown promise. Studies like 
Yilma (2023) have demonstrated their capability 

Techniques such as Differential Privacy and 
Privacy-Preserving GANs have emerged to 
address ethical concerns surrounding the use 

Commonly employed metrics for evaluating 
synthetic data include Frechet Inception Distance 
(FID), Root Mean Square Error (RMSE), and 
Kolmogorov- Smirnov (KS) tests. These metrics 

1.1 Traditional Methods for Synthetic Data Generation 

1.2 Applications of GANs in the Energy Sector

1.3 Privacy Preservation Techniques

1.4 Evaluation Metrics for Synthetic Data

Conversely, data-driven methods, though reliant 
on substantial historical data, excel in capturing 
behavioral patterns without necessitating detailed 
structural information.

Pillai et al. (2014) proposed a hybrid approach 
combining consumption and weather data 

to generate synthetic load profiles, marking a 
significant advancement in realistic synthetic 
data generation for energy applications. Despite 
these advancements, generating synthetic energy 
consumption profiles remains challenging due 
to the interplay of human behavior and building 
characteristics.

limited in their ability to capture dynamic, nonlinear 
patterns in energy data

to generate synthetic electricity demand profiles 
that replicate complex temporal patterns with high 
fidelity.

of sensitive data. These methods ensure that 
synthetic data does not compromise the privacy 
of individual contributors.

provide objective assessments of the statistical 
similarity between real and synthetic datasets 
(Haizea, 2025).

Table 1. Comparison of some traditional methods of generating synthetic data.

Source: own elaboration.
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The generator is configured to map a latent 
noise vector into synthetic energy consumption 
profiles. Its architecture comprises dense layers 

The discriminator architecture includes dense 
layers with Dropout to mitigate overfitting. 
The final layer employs a Sigmoid activation 

Comparison of Approaches

This article introduces Generative Adversarial 
Networks (GANs) as a promising approach for 
generating synthetic energy consumption profiles. 
By leveraging Machine Learning technology, GANs 
can learn and replicate complex consumption data 
patterns while preserving the statistical properties 

2.1 Generator Design Framework

2.2 Discriminator Optimization

of real data and safeguarding privacy. Specifically, 
this study proposes a GAN model simulated in 
Python to replicate energy consumption profiles, 
offering new opportunities for optimizing and 
ensuring the sustainability of electrical grids.

2. MATERIALS AND METHODS 

Model Architecture

Generator: The generator is a neural network 
designed to produce synthetic electrical 
consumption profiles. It takes a random noise 
vector as input, representing a latent feature space. 
Through multiple neural layers, the generator 
transforms this noise into structured data that 
mimics real energy consumption patterns.

Discriminator: The discriminator is another neural 
network tasked with assessing the authenticity of 
the profiles generated by the generator. It learns 
to differentiate between real and synthetic data, 
providing feedback to improve both networks 
through adversarial training.

Framework and Technique

Framework: The implementation of the model is 
conducted using PyTorch, a versatile and efficient 
library for deep learning.

Technique: The architecture employs Generative 
Adversarial Networks (GANs), where the generator 
and discriminator are trained in a competitive 
adversarial setup.

Implemented Technologies

PyTorch: Used for implementing, training, and 
evaluating neural networks. GPU (Graphics 
Processing Unit): Accelerates the training process 
through parallel computations.

Optimizers: Adam optimizer is employed to 
adjust neural network weights and minimize loss 
functions.

Data Visualization: Libraries such as Matplotlib 
are utilized to analyze model convergence and 
validate data quality.

with LeakyReLU activation functions to capture 
non-linear relationships and a final Tanh layer for 
output normalization.

function, facilitating the interpretation of results as 
probabilities.
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Both the generator and discriminator are optimized 
using the Binary Cross- Entropy loss function. 
This choice ensures that the generator learns to 

Hyperparameters, such as the latent space 
dimension (100) and learning rate (0.0002), were 
determined via grid search to achieve a balance 

The training process was monitored by evaluating 
the loss values of the generator and discriminator. 
Convergence was deemed achieved when both 

The model was trained on an NVIDIA RTX 
3090 GPU with 24 GB of memory, significantly 

2.3 Loss Function Selection

3.1 Hyperparameter Selection Methodology 

3.2 Convergence Criteria

3.3 Hardware Specifications

deceive the discriminator while the discriminator 
accurately identifies synthetic data.

3. TRAINING PROTOCOL

between training stability and convergence speed.

loss metrics stabilized, and the generated profiles 
became indistinguishable from real data.

reducing training time compared to CPU-based 
implementations.

4. DATA PREPROCESSING

The model was trained and validated using 
hourly electricity consumption data from a mid-
size commercial/institutional facility. Due to 
confidentiality agreements, specific details about 
the facility cannot be disclosed. However, the 
dataset characteristics are representative of typical 
mixed-use electrical installations commonly found 
in educational, corporate, or commercial buildings.

Dataset characteristics:

-	Installation type: Commercial/institutional 
building
-	Installed capacity: 500-800 kW
-	Data period: 12 consecutive months
-	Temporal resolution: Hourly measurements 
(8,760 data points)

-	Consumption range: 150-650 kWh per 
hour
-	Load composition: Lighting (30%), HVAC 
systems (40%), office equipment (20%),
other loads (10%)

The consumption patterns include:
-	Daily cycles with operational hours (7:00-
19:00) showing higher demand
-	Reduced consumption during non-
operational hours and weekends
-	Seasonal variations related to cooling/
heating requirements
-	Typical variability of occupied building 
environments

This dataset scale is representative of numerous 
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Energy consumption data was normalized using 
Min-Max Scaling to ensure all values fell within 

Preprocessing steps included cleaning the dataset 
by imputing missing values via linear interpolation 
and removing extreme outliers using boxplot 
analysis.

Implementation Hyperparameters
•	Latent space dimension: 100
•	Learning rate: 0.0002
•	Number of epochs: 10,000
•	Batch size: 64

These parameters were carefully selected to 
optimize the balance between training speed and 
model stability.

4.1 Normalization Techniques

4.2 Data Quality Measures

facilities worldwide, making the methodology 
applicable and reproducible for similar energy 
management applications without requiring 
national-scale infrastructure data.

the range [-1, 1], enhancing the model’s learning 
efficiency.

Training Procedure

The training process employed an adversarial 
approach, with the generator creating synthetic 
profiles that the discriminator aimed to classify as 
either real or generated. This iterative competition 
improved both models until equilibrium was 
reached.

A dataset of real energy consumption profiles, 
normalized beforehand, was used to ensure 
comparability with the generated profiles. This 
preprocessing step was critical for ensuring 
consistent results and robust model evaluation.

Python Code

import torch
import torch.nn as nn import torch.optim as optim import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler # Hyperparameters
LATENT_SPACE_DIM = 100
CONSUMPTION_PROFILE_DIM = 24
LEARNING_RATE = 0.0002
EPOCHS = 10000
BATCH_SIZE = 64
 
class ElectricityConsumptionGenerator(nn.Module):
	 def  init (self, latent_space_dim=LATENT_SPACE_DIM): super(). init ()
	 self.model = nn.Sequential( 
	 nn.Linear(latent_space_dim, 256), 
	 nn.LeakyReLU(0.2), 
	 nn.BatchNorm1d(256), 
	 nn.Linear(256, 512), 
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	 nn.LeakyReLU(0.2), 
	 nn.BatchNorm1d(512),
	 nn.Linear(512, CONSUMPTION_PROFILE_DIM),
	 nn.Tanh() # Activation to normalize output
)

def forward(self, z): 
	 return self.model(z)

class ElectricityConsumptionDiscriminator(nn.Module): 
	 def  init (self):
		  super(). init ()
		  self.model = nn.Sequential( 
		  nn.Linear(CONSUMPTION_PROFILE_DIM, 512),
		  nn.LeakyReLU(0.2), 
		  nn.Dropout(0.3), 
		  nn.Linear(512, 256), 
		  nn.LeakyReLU(0.2), 
		  nn.Dropout(0.3), 
		  nn.Linear(256, 1), 
		  nn.Sigmoid()
		  )

def forward(self, profile): 
	 return self.model(profile)

class ElectricityConsumptionGAN: 
	 def  init (self):
		  self.generator = ElectricityConsumptionGenerator()
 
		  self.discriminator = ElectricityConsumptionDiscriminator()

		  self.loss_function = nn.BCELoss() 
		  self.generator_optimizer = optim.Adam(
			   self.generator.parameters(), 
			   lr=LEARNING_RATE, 
			   betas=(0.5, 0.999)
		  )
		  self.discriminator_optimizer = optim.Adam(
			   self.discriminator.parameters(), 
			   lr=LEARNING_RATE,
			   betas=(0.5, 0.999)
		  )
	 def generate_real_data(self, size):
		  # Simulating real data (modify as needed) 
		  return torch.FloatTensor(np.random.normal(
			   loc=0.5, 
			   scale=0.2,
			   size=(size, CONSUMPTION_PROFILE_DIM)
		  ))
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	 def train(self): 
		  generator_losses = [] 
		  discriminator_losses = []

		  for epoch in range(EPOCHS): 
			   # Training the Discriminator 
			   self.discriminator.zero_grad()

			   # Real data
			   real_data = self.generate_real_data(BATCH_SIZE) 
			   real_labels = torch.ones(BATCH_SIZE, 1)
			 
			   # Generated data
			   noise = torch.randn(BATCH_SIZE, LATENT_SPACE_DIM) 
			   generated_data = self.generator(noise)
			   generated_labels = torch.zeros(BATCH_SIZE, 1)

			   # Discriminator loss
			   real_output = self.discriminator(real_data)
			   generated_output = self.discriminator(generated_data.detach())

			   discriminator_loss = ( 
				    self.loss_function(real_output, real_labels) +
				    self.loss_function(generated_output, generated_labels)
 
			   )

			   discriminator_loss.backward() 
			   self.discriminator_optimizer.step()

			   # Training the Generator 
			   self.generator.zero_grad()

			   noise = torch.randn(BATCH_SIZE, LATENT_SPACE_DIM) 
			   generated_data = self.generator(noise)
			   generated_output = self.discriminator(generated_data)

			   generator_loss = self.loss_function( 
				    generated_output, 
				    torch.ones(BATCH_SIZE, 1)
			   )

			   generator_loss.backward() 
			   self.generator_optimizer.step()
			 
			   # Record losses 
			   generator_losses.append(generator_loss.item()) 
			   discriminator_losses.append(discriminator_loss.item())
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			   # Print progress
			   if epoch % 100 == 0:
				    print(f”Epoch [{epoch}/{EPOCHS}]”) 
				    print(f”Discriminator Loss: {discriminator_loss.item()}”) 
				    print(f”Generator Loss: {generator_loss.item()}”)
		
			   return generator_losses, discriminator_losses 
		  def generate_profiles(self, num_profiles=10):
			   with torch.no_grad():
				    noise = torch.randn(num_profiles, LATENT_SPACE_DIM) 
				    generated_profiles = self.generator(noise).numpy()
			   return generated_profiles

		  # Enhanced Visualization
		  def visualize_results(generated_profiles, generator_losses, discriminator_losses): 
			   # Distinctive color palette
			   colors = [‘#1f77b4’, ‘#ff7f0e’, ‘#2ca02c’, ‘#d62728’, ‘#9467bd’]

		  # Visualization configuration 
		  plt.figure(figsize=(16, 10))
		  plt.subplot(2, 1, 1)
 
		  # Visualizing Generated Profiles
		  for i, profile in enumerate(generated_profiles): 
			   plt.plot(
				    range(len(profile)), 
				    profile,
				    label=f’Synthetic Profile {i+1}’, 
				    color=colors[i],
				    linewidth=2, 
				    marker=’o’
			   )

			   plt.title(‘Synthetic Electricity Consumption Profiles’, fontsize=16) 
			   plt.xlabel(‘Hour of the Day’, fontsize=12)
			   plt.ylabel(‘Normalized Consumption’, fontsize=12) 
			   plt.legend(loc=’best’)
			   plt.grid(True, linestyle=’--’, alpha=0.7)

			   # Visualizing Losses 
			   plt.subplot(2, 1, 2) 
			   plt.plot(
				    generator_losses, 
				    label=’Generator Loss’, 
				    color=’#1f77b4’, 
				    linewidth=2
			   )
			   plt.plot(
				    discriminator_losses, 
				    label=’Discriminator Loss’, 
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				    color=’#ff7f0e’, 
				    linewidth=2
			   )
			   plt.title(‘Loss Evolution during Training’, fontsize=16) 
			   plt.xlabel(‘Training Epochs’, fontsize=12) 
			   plt.ylabel(‘Loss Value’, fontsize=12) 
			   plt.legend(loc=’best’)
			   plt.grid(True, linestyle=’--’, alpha=0.7)

			   plt.tight_layout() 
			   plt.show()
		
		  # Main Function 
		  def main():
			   # Seed for reproducibility 
			   torch.manual_seed(42) 
			   np.random.seed(42)
 
			   # Create and train GAN model
			   gan_model = ElectricityConsumptionGAN()

			   # Train model
			   generator_losses, discriminator_losses = gan_model.train()

			   # Generate profiles
			   generated_profiles = gan_model.generate_profiles(num_profiles=5)
			 
			   # Visualize results
			   visualize_results(generated_profiles, generator_losses, discriminator_losses)

			   # Program entry point
			   if  name	 == “ main “: 
				    main()

5. RESULTS

In Figure 2, the results of the GAN model training 
in Python are presented, specifically executed 
in an interactive environment such as IDLE. This 
process generated data and metrics about the 

model, including parameters such as discriminator 
losses, generator losses, and the epoch.
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Figure 2. Simulation results in Python’s IDLE.

Source: own elaboration.

1. Generator Loss

The generator loss quantifi es the generator’s 
eff ectiveness in deceiving the discriminator. A high 
generator loss indicates that the discriminator 
can easily identify the generated data as fake. 
Conversely, a low loss value suggests that the 
generator is producing more realistic data. The 
objective is to minimize this loss so the generator 
outputs synthetic data indistinguishable from real 
data.

2. Discriminator Loss

The discriminator loss measures the discriminator’s 
ability to diff erentiate

between real and generated data. A high 
discriminator loss indicates diffi  culty in 
distinguishing between the two, whereas a low 
loss implies that the discriminator eff ectively 
identifi es generated data as fake. Ideally, this loss 
should stabilize around 0.5, refl ecting that the 
discriminator performs no better than random 
guessing in diff erentiating real and generated data.

3. Epoch

An epoch represents one complete pass through 
the training dataset, marking the progress of 
the training process. Increasing the number of 
epochs allows the model more opportunities 
to learn and refi ne its outputs. It is essential to 
monitor the losses throughout the epochs to 
ensure convergence and optimal training results.

4. Discriminator  Output  for  Real  and  
Generated  Data 

The outputs from the discriminator are its 
predictions on whether the input data is real or 
generated:

real_output = self.discriminator(real_data)
generated_output = self.discriminator(generated_
data.detach())

o Real Output: Should approach 1, 
indicating that the discriminator accurately 
identifi es real data.

o Generated Output: Should approach 
0, showing the discriminator’s ability to 
correctly classify generated data as fake. 
The objective is to refi ne these outputs so 
the discriminator becomes increasingly 
accurate in its predictions.
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Figure 3. Graph of an Electrical Consumption Profi le and Loss Evolution During Training.

Source: own elaboration.

Each line represents a synthetic electrical 
consumption profi le generated by the model. 
Diff erent colors and markers are used to distinguish 
between the various profi les. Figure 3 illustrates 
how the GAN model has generated consumption 
profi les that replicate the patterns observed in 
the real data. You can observe the variations in 
consumption throughout the day, which may help 
identify trends and patterns in electrical usage.

Regarding the loss evolution during training, the 
blue line represents the generator loss, and the 

5. Loss Logging

Generator and discriminator losses are recorded 
at each epoch to track the model’s learning 
progress:

generator_losses.append(generator_loss.item()) 
discriminator_losses.append(discriminator_loss.
item())

These logs enable the visualization of loss trends 
during training. By analyzing the evolution of these 
losses, it is possible to assess the eff ectiveness of 
the learning process and implement adjustments 
if necessary.

The results of the GAN model are presented in 
Figure 3, comprising two key elements:

• Visualization of Synthetic Energy 
Consumption Profi les: Illustrating the 
generator’s capability to produce realistic 
consumption patterns.

• Loss Evolution During Training:
Providing insight into the dynamic interaction 
between the generator and discriminator as 
they improve over successive epochs.

orange line represents the discriminator loss. 
Both evolve over the course of training, ideally 
decreasing and stabilizing over time, which 
indicates that the model is learning to generate 
synthetic profi les that are diffi  cult to distinguish from 
real ones. If the losses do not converge or exhibit 
erratic behavior, it may be necessary to adjust the 
model’s hyperparameters or architecture.
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5.1 Complementary Visualizations Based on Method Validation

5.2. PCA: Dimensionality Reduction

In Figure 4, both real and synthetic data are 
displayed in terms of density distribution. As 
expected, the density curves for the real and 
synthetic data are very similar, suggesting that 
the GAN has successfully captured the univariate 
distribution of the real data. A noticeable 
discrepancy (e.g., if the synthetic curve is shifted 

5.1.1 Density Distribution

Figure 4. Density Distribution

Figure 5. PCA Representation.

Source: own elaboration.

Source: own elaboration.

or broader than the real one) would indicate that 
the model has not yet captured the variability of 
the data. However, this evaluation is superfi cial 
and should be complemented with quantitative 
metrics and multivariate analysis [47].
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5.3. Histogram

5.4 Boxplot

The histogram in Figure 6 compares the frequency 
distributions of the real and synthetic values, 
demonstrating a good replication of the univariate 

Dimensionality reduction via PCA allows 
multivariate data to be projected into a two-
dimensional space, aiding in their comparison. In 
electrical applications, this is useful not only for 
emulating individual values (e.g., consumption at a 
specifi c hour) but also for capturing more complex 
patterns (such as the relationship between 
consumption at diff erent times of the day).

Figure 5 shows a distribution of the data as 
components of Principal Component Analysis 
(PCA). PCA is defi ned as a dimensionality 
reduction technique used to transform a dataset 
with many variables (dimensions) into a set with 

Figure 7 presents the boxplot, which encompasses 
the median, interquartile ranges, and outliers of 
both the real and synthetic data. The boxes and 
whiskers for the real and synthetic data should be 
similar in length and position.

Figure 6. Histogram.

Source: own elaboration.

fewer variables, while retaining as much of the 
original information as possible (Zhang & Li, 2023).

In the case of Figure 4, there is no signifi cant 
dispersion between the real and synthetic 
data points, indicating that the multivariate 
characteristics have been satisfactorily replicated. 
If a discrepancy had been observed, it would have 
required validation of the model architecture or 
training process. PCA-based analyses are crucial 
in contexts such as consumption across diff erent 
locations or times, as well as for the operation and 
planning of smart grids.

distribution of the real data. This is particularly 
relevant in electrical design applications (Li et al., 
2016).

In electrical grids, the ability to model extreme 
values is critical, as these may represent unusual 
events such as demand spikes.
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Figure 7. Boxplot.

Table 2. Comparison of other methods during training.

Source: own elaboration.

Source: own elaboration.

Comparison of GANs vs. Alternative Models
In this section, GANs are contrasted with other 
traditional and advanced approaches:

• TimeGAN: Capable of capturing time 
series with high fi delity, but with greater 
computational complexity and long training 
times.

Table 2 indicates that GANs have better accuracy 
(lower RMSE and MAE), and a longer training time 
compared to ARIMA but shorter than TimeGAN. 
They have a high generalization capacity. 
TimeGAN is able to capture time series with high 
fi delity. It also has a high generalization capacity, 
but its training time is longer and it has a lower 
accuracy than GANs. ARIMA is a faster method in 

• Statistical models (ARIMA): Suitable for 
linear trends, but limited in their ability to 
model non-linear relationships.

• Recurrent networks: Although eff ective for 
temporal patterns, they require extensive 
training data to avoid overfi tting problems.

terms of training time, but less accurate and has 
a low generalization capacity. Suitable for linear 
trends, but limited in its ability to model non-linear 
relationships.
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6. DISCUSSION

7. CONCLUSIONS

The synthetic generation of electrical consumption 
profiles using Generative Adversarial Networks 
(GANs) represents a significant advancement in 
energy planning and management. The findings 
of this study highlight the potential of GANs to 
address contemporary challenges related to data 
privacy and accessibility. GANs ability to replicate 
intricate patterns, such as daily consumption 
variations, underscores their utility not only 
for simulations but also as a powerful tool for 
generating artificial datasets that complement 
real-world data in research and development 
applications.

A key aspect worth emphasizing is the quality of 
the generated data, which is demonstrated by its 
statistical resemblance to real data. This capability 
implies that GANs can not only emulate existing 
consumption patterns but also be leveraged to train 
and validate predictive and analytical algorithms 
without jeopardizing sensitive information. This 
approach holds substantial potential for industrial 

This study demonstrates that Generative 
Adversarial Networks (GANs) are a powerful 
and promising tool for generating synthetic 
electrical consumption profiles. The results 
reveal that GANs can effectively replicate both 
univariate and multivariate patterns in electricity 
consumption data, offering a robust solution 
for data augmentation, privacy-preserving 
simulations, and the development of advanced 
energy management algorithms. Validation of the 
synthetic data using various graphical techniques 
such as density distributions, PCA, histograms, 
and boxplots has confirmed a high degree of 
similarity to real- world data, reinforcing the 
model’s capability to accurately replicate essential 
consumption characteristics.

By overcoming the challenges associated 
with accessing real consumption data, this 

and academic sectors where the accessibility and 
use of confidential data are restricted.

However, it is crucial to recognize certain inherent 
limitations of the model. While the results are 
promising, further validation in more complex 
scenarios involving multiple contextual variables 
such as temperature, consumer behavior, and 
dynamic energy pricing remains necessary. 
Moreover, the stability of GANs during training 
and the interpretability of their outputs continue 
to present challenges that must be resolved to 
ensure more robust and reliable implementation.

From a practical standpoint, this methodology 
demonstrates flexibility to adapt to diverse 
applications, such as smart grid planning and 
microgrid modeling. Its independence from 
corporate data offers a significant advantage 
in regulated and competitive environments, 
facilitating progress toward sustainable and 
inclusive energy solutions.

approach contributes to the democratization 
of energy analysis, enabling researchers and 
organizations to utilize representative datasets 
without compromising privacy or security. Future 
research directions could explore the integration 
of contextual variables, optimization of model 
architecture, and validation of the methodology in 
real-world energy systems.

As the global shift toward sustainability 
accelerates, the generation of synthetic data 
using GANs emerges as a catalyst for the design 
of resilient and intelligent electrical infrastructures. 
This work invites the scientific and technological 
community to delve deeper into the potential of 
this innovative tool, solidifying its role as a viable 
and transformative solution in the global energy 
transition.
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