Análisis biofísico del ciclo de vida en la producción de ecoladrillos en las islas Galápagos
Identicación de los posibles Impactos Ambientales de la producción de hidrógeno ver
de a partir de proyectos eólicos oshor
e. Caso de
Estudio:Zona Económica Exclusiva de Uruguay
Garantias nanceiras: evoluções regulatórias para assegurar o efetivo descomissionamento das instalações de pr
odução
de petróleo e gás natural no Brasi
Industrial development for the energy transition in latin america: Lessons learned from wind energy for green hydr
ogen in Argentina
T
echno-economic assessment of the use of green hydr
ogen: case study in the ceramic industry
Assessing Uruguay’
s green hydr
ogen potential: A comprehensive analysis of electricity and hydr
ogen sector optimization until 2050
Solar energy time series analysis via markov chains
China and the global expansion of green energy technologies: EVs, batteries and lithium investments in Latin America.
Uma análise sobre a inuência geopolítica da transição energética na cadeia de valor global de materiais críticos
V
olúmen VIII, número 2, Diciembr
e 2024
ISSN 2602-8042 impreso / 2631-2522 digital
1
COMITÉ EDITORIAL
Andrés Rebolledo Smitmans
Organización Latinoamericana de Energía (OLADE). Ecuador
.
Pablo Garcés
Organización Latinoamericana de Energía (OLADE). Ecuador
.
Marcelo V
ega
Asociación de Universidades Grupo Montevideo (AUGM). Uruguay
.
COMITÉ AD-HONOREM
Andrés Romero C.
Ponticia Universidad Católica de Chile.
Leonardo Beltrán.
Institute of the Americas. México.
Manlio Coviello.
Ponticia Universidad Católica de Chile.
Mauricio Medinaceli.
Investigador independiente. Bolivia.
Ubiratan Francisco Castellano.
Investigador independiente. Brasil.
COORDINADORES DE LA EDICIÓN
DIRECTOR GENERAL
Andrés Rebolledo Smitmans
DIRECTORES EJECUTIVOS
Pablo Garcés
Marcelo V
ega
COORDINADOR DE PRODUCCIÓN
Pablo Garcés
CONSUL
TORES INDEPENDIENTES
Octavio Medina
2
REVISORES
Fabio García
OLADE, Ecuador
.
Luis Daniel García
Consultor Independiente.
Atahualpa Mantilla
Universidad Central del Ecuador
.
Fernando Jaramillo
Universidad Laica Eloy Alfaro, Ecuador
.
Luciana Clementi
CONICET
, Argentina.
José Cataldo
Universidad de la República, Uruguay
.
Italo Bove
Universidad de la República, Uruguay
.
Iván López
Universidad de la República, Uruguay
.
José Alonso
Universidad Internacional de la Rioja, España.
Axel Poque
Ponticia Universidad Católica de V
alparaíso, Chile.
Marcos Medina
Universidad Nacional del Nordeste, Argentina.
Ana Lía Guerrer
o
Universidad Nacional del Sur
, Argentina.
T
ania Ricaldi
Universidad Mayor de San Simón, Bolivia.
Daniel Canedo
ENDE, Bolivia.
Sergio Pinto Castiñeiras Filho
Ponticia Universidad Católica de Río de Janeiro, Brasil
María del Sol Muñoz
Investigadora Independiente, Chile y México
Marlei Roling Scariot
Universidade Federal da Integração Latino Americana, Brasil
Pablo Albán
Ministerio de Energía y Minas, Ecuador
3
INDICE
Editorial OLADE
Editorial ALADEE
Análisis biofísico del ciclo de vida en la producción de
ecoladrillos en las islas Galápagos
Identicación
de
los
posibles
Impactos
Ambientales
de
la
producción
de
hidrógeno
ver
de
a
partir
de
proyectos
eólicos
oshore.
Caso
de
Estudio:
Zona
Económica
Exclusiva de Uruguay
Garantias
nanceiras:
evoluções
regulatórias
para
assegurar o efetivo descomissionamento das instalações
de produção de petróleo e gás natural no Brasil
Industrial
development
for
the
energy
transition
in
latin
america:
Lessons
learned
from
wind
energy
for
green
hydrogen in Argentina.
T
echno-economic
assessment
of
the
use
of
green
hydrogen: case study in the ceramic industry
Assessing
Uruguay’
s
gr
een
hydrogen
potential:
A
comprehensive
analysis of
electricity and
hydrogen
sector
optimization until 2050.
Solar energy time series analysis via markov chains
China
and
the
global
expansion
of
green
energy
technologies:
EVs,
batteries
and
lithium
investments
in
Latin America.
Uma
análise
sobre
a
inuência
geopolítica
da
transição
energética na cadeia de valor global de materiais críticos
5
7
9
25
45
63
79
95
117
137
153
5
La
presente
edición
especial
de
la
Revista
ENERLAC
se
enmarca
en
la
colaboración
institucional
entre
la
Organización
Latinoamericana
de
Energía (OLADE)
y
la Asociación
Latinoamericana
de Economía
de
la
Energía
(ALADEE).
Esta
edición
de
la
revista
de
publicación
conjunta r
epresenta
mucho más que una
compilación de artículos
académicos;
constituye
un
testimonio
tangible
del
compromiso
compartido
por
ambas
organizaciones
para
promover
transiciones
energéticas justas
y equitativas
en América
Latina y
el Caribe.
La
decisión
de
OLADE
y
ALADEE
de
unir
esfuerzos
en
esta
edición de
ENERLAC r
esponde a la
necesidad urgente
de integrar
perspectivas
técnicas,
económicas
y
sociales
en
el
abordaje
de
las
transiciones
energéticas
en
marcha
en
la
región.
En
un
contexto
global
de
transformación
acelerada
del
sector
energético,
esta
colaboración
editorial
materializa
la
convicción
compartida
de
que
las
publicaciones
académicas
deben trascender
la divulgación
para convertirse
en instrumentos
efectivos de
cambio.
Esta
colaboración
editorial
rearma
un
principio
fundamental:
el
conocimiento
académico
en
materia
energética
adquier
e
su máximo
valor
cuando se
pone
al servicio
de
transformaciones energéticas
adaptadas
a
las
condiciones
regionales
y
con
efectos
sociales
positivos.
En
un
contexto
regional
marcado
por
profundas
desigualdades,
las
transiciones
energéticas
representan
tanto
un
desafío
como
una
oportunidad
histórica para
recongurar
sistemas
energéticos
de
formas que
contribuyan
a la
equidad social
y el
desarr
ollo
sostenible.
ENERLAC,
como
plataforma
editorial,
se
consolida
así
no
solo
como
un
espacio
de
difusión
académica,
sino
como
un
instrumento
concreto
para
la
construcción
colectiva
de
visiones
energéticas
que
respondan
auténticamente
a
las
aspiraciones
y
necesidades
de
las
sociedades
latinoamericanas y
caribeñas.
Es
importante
recalcar
que
una buena
parte
del
material
presentado
en
la
presente
edición,
es
fruto
de la IX
edición del evento: Latin American Energy
Economics Meeting (ELAEE), desarrollado en el
mes de
julio en
Rio de
Janeir
o,
organizado por
la ALADEE.
Invitamos
a
nuestr
os
lectores—investigador
es,
tomador
es
de
decisión, empresas,
organizaciones
sociales
y
público
interesado—a
sumarse
activamente
a
este
esfuerzo
colaborativo.
Las
transiciones
energéticas
justas
y
equitativas
que
nuestra
región
requier
e
conllevan
procesos
sociales
amplios
donde
el
conocimiento
técnico
y
económico
dialogue
permanentemente
con
valores
éticos,
aspiraciones comunitarias
y visiones
de desarrollo inclusivo.
Esta
edición
especial
de
ENERLAC
es
nuestra
contribución
a
ese
diálogo
esencial.
Un
diálogo
al
que OLADE
y ALADEE,
desde sus
respectivas trayectorias
institucionales y
ahora desde
su alianza
estratégica,
se
comprometen
a
enriquecer
con
investigación
rigurosa,
análisis
independiente
y
perspectivas diversas.
EDITORIAL OLADE
7
E
sse
número
especial
da
Enerlac
é
fruto
de
uma
parceria
entre
Associação
Latino
Americana
de
Economia
da
Energia
(ALADEE)
e
a
Organização
Latino-Americana
de
Energia
(OLADE).
O
número
traz
artigos
selecionados
que
foram
apr
esentados
no
9º
Encontro
Latino
Americano de Economia da
Energia (ELAEE). O 9º
ELAEE
foi
realizado
no
Rio
de
Janeiro
de
28
a
31
de
julho
de
2024
e
faz
parte
dos
congressos
regionais
da
International
Association
of
Energy
Economics
(IAEE).
O
Encontro
contou
com
10
plenárias
temáticas
em
que
participaram
especialistas
internacionais
e
174
artigos
que
passaram
por
chamada de
seleção foram
apresentados.
O
tema
do
encontro
foi
“T
ransição
Energética,
Mercados
de
Energia
na
América
Latina
e
Caminhos
para
o
Desenvolvimento:
Descarbonização
da
Economia
Global”.
Foram
debatidos
os
desaos
da transição energética no mundo,
em um cenário
de conitos
geopolíticas e
incerteza de suprimento
energético.
Esse
cenário
impacta
a
América
Latina,
oferecendo diculdades e
oportunidades. A região
conta
com
abundância
de
recursos
renováveis
e
as
novas
tecnologias,
como
o
hidr
ogênio
verde,
podem
favor
ecer
a
liderança
da
região
no
processo
de descarbonização.
A
par
ceria
com
a
Enerlac
é
bastante
promissora
para
a
ALADEE
cumprir
seu
papel
de
difundir
o
tema
de
Economia
da
Energia
na
América
Latina.
A
publicação
desse
númer
o
especial
pode
ser
um
passo
inicial
para
uma
cooperação
duradoura
com
a Olade
e Enerlac.
EDITORIAL ALADEE
Luciano Losekann
Diretor Edu
Professor Associado -
Economia/UFF
Diogo Lisbona Romeiro
Presidente
ALADEE
9
Análisis biofísico del ciclo de vida en la
pr
oducción de ecoladrillos en las islas
Galápagos
Biophysical analysis of the life cycle in the pr
oduction of
eco-bricks in the Galapagos islands
Fernando Pinzón Duchi
1
, Rony Parra Jácome
2
Recibido: 05/09/2024 y Aceptado: 9/12/2024
1.- Mentefactura Cia. Ltda. https://orcid.org/0000-0002-5422-6086
lfpinzonm2@gmail.com
2.- Instituto de Investigaciones Hidrocarburiferas - Universidad Central del Ecuador https://or
cid.org/0000-0003-2942-7449
rmparra@uce.edu.ec
10
11
Los r
ecursos minerales
y energéticos
en las Islas
Galápagos son
limitados, lo
que afecta las
dinámicas
socioeconómicas,
sobre
todo
en
la
construcción
de
edicaciones.
Los
materiales
de
construcción
deben
importarse
desde
continente,
lo
que
incrementa
el
consumo
de
combustibles
fósiles
y
las
emisiones
de gases
de efecto
inver
nader
o (GEI). Como alternativa para
reducir
la pr
esión sobr
e el ecosistema, se
ha comenzado a producir y utilizar ecoladrillos fabricados con vidrio
r
eciclado,
siguiendo los principios
de
la
economía
circular
(EC).
No
obstante,
la
pr
oducción
de
ecoladrillos
requiere
energía
y
materiales
imprevistos, lo
que
podría afectar
su
sostenibilidad.
El estudio
se
propuso analizar
los
ujos biofísicos
presentes en
la
producción
de
ecoladrillos
en
Galápagos, con
un
enfoque
particular
en
las
emisiones
de dióxido
de carbono
equivalente (CO₂e)
derivadas del consumo
de materiales
y energía.
Utilizando la
metodología
de Análisis
del
Ciclo
de Vida
(ACV),
se
determinó que
la
producción
de
16,800 ecoladrillos
generó 5 toneladas de CO₂e. El
uso de cemento fue responsable del 79.40% de las emisiones totales
y
del
62.2%
de
la
energía
utilizada.
En
comparación
con
la
producción
de
un
bloque
de
hormigón
convencional, la energía
incorporada se reduce en un 12.5%, mientras
que las emisiones aumentaron
en un 16.8%.
Mineral
and
energy
resour
ces
in
the
Galapagos
Islands
are
limited,
which
aects
socio-economic
dynamics, especially in building construction. Building materials must be imported from the mainland,
which increases fossil fuel consumption and gr
eenhouse gas (GHG) emissions. As an alter
native to
reduce pr
essure on the ecosystem, eco-bricks made from r
ecycled glass have started to be produced
and used, following
the principles of the circular economy (CE). However
, the
pr
oduction of eco-bricks
requir
es
unforeseen
energy
and
materials,
which
could
aect
their
sustainability
.
The
study
set
out
to
analyze
the
biophysical
ows
present
in
the
production
of
eco-bricks
in
Galapagos,
with
a
particular
focus
on
carbon
dioxide
equivalent
(CO₂e)
emissions
derived
from
material
and
energy
consumption.
Using the Life Cycle Assessment (LCA) methodology
, it was determined that the production of 16,800
eco-bricks
generated
5
tons
of
CO₂e.
The
use
of
concrete
was
responsible
for
79.40%
of
the
total
emissions
and
62.2%
of
the
energy
used.
Compar
ed
to
the
production
of
a
conventional
concr
ete
block, embodied energy is reduced by 12.5%, while emissions incr
eased by 16.8%.
P
ALABRAS CLA
VE:
Ecoladrillos,
Análisis
del
Ciclo
de
Vida,
energía
incorporada,
huella
de
carbono,
CO₂, economía circular
, Galápagos.
KEYWORDS:
Eco-bricks,
Life
Cycle
Assessment,
embodied
energy
,
carbon
footprint,
CO₂,
circular
economy
, Galápagos.
Resumen
Abstract
12
1. INTRODUCCIÓN
A
nivel global,
las
edicaciones
son responsables
del
39%
de
las
emisiones
de
dióxido de
carbono
(CO₂)
r
elacionadas
con
el
consumo
de
energía
(FFLA,
2023).
Mientras
que
solo
el
sector
del
cemento
es
responsable
del
7%
del
total
de
las
emisiones
mundiales de
CO₂
(Islam, et
al.,
2024).
De
acuerdo
con
el
Banco
Central
del
Ecuador
(BCE),
aunque
la
construcción
es
una
industria
intensiva
en
energía,
repr
esentó
el
quinto
sector
más
importante
de
la
economía
ecuatoriana,
siendo
que,
en
el
año
2022
aportó
con
el
6.1%
del
Producto
Interno
Bruto
(PIB)
ecuatoriano
(CCQ, 2023).
En Galápagos el desarrollo del sector de la
construcción
enfrenta
múltiples
desafíos,
no
solo
por
la
fragilidad
de
su
ecosistema,
sino
por
la
dinámica
demográca
y
la
demanda
de
infraestructura.
De
acuerdo
con
los
datos
del
censo
2022
la
población
y
las viviendas
ocupadas
crecier
on
en
un
13
%
sobr
e
las
reportadas
en
el
censo
2015.
La
población
pasó
de
25.2
a
28.5
mil
habitantes,
mientras
que
las
viviendas
ocupadas
pasar
on
de
8.5
a
9.6
mil
en
solo
7
años. Se
muestra también
que el 96%
(9,268) de
viviendas
usa
hormigón,
bloques
o
ladrillos
para
la
construcción
de
paredes,
y
el
42.02%
(4,058)
tiene
loza
de
hormigón
en
el
techo
(INEC,
2023;
INEC, 2015).
Por
su
parte:
a)
la
disminución
de
los
stocks
de
materiales
pétreos
en
las
minas
de
piedra
volcánica
dentro
del
Par
que
Nacional
(Euroclima
y
Mentefactura,
2020);
b)
la
r
educción
en
la disponibilidad de agua dulce debido a
alteraciones
en los
patrones
de
lluvia
y
al aumento
de
las
temperaturas
(CAF
,
2021);
c)
la
alta
dependencia
de
la
importación
de
materiales
de
construcción y energía; y d) la limitada
efectividad
en
la
implementación
de
una
matriz
energética
renovable, dado
que
el 99.48%
de
la
electricidad
proviene
del
diésel
(INEC,
2023),
son
muestras
de
la
presión
que
el
sistema
socioeconómico
de
Galápagos
ejerce
sobre
su
ecosistema
en
términos
de
escasez
de
recursos
y
emisiones
de
gases de efecto invernadero (GEI).
En
este
contexto,
se
vuelve
crucial
explorar
estrategias
que
promuevan
la
eciente
optimización
de
los
recursos.
La
construcción
sostenible
y
la
economía
circular
(EC)
sugieren
maximizar
el
aprovechamiento
responsable
y
sostenible
de
estos
recursos,
en
aras
de
fortalecer
la
resiliencia
frente
al
cambio
climático.
Sus
principios consideran aspectos
como la eciencia
energética,
el
uso
eciente
del
agua,
la
mejora
del
ambiente
interior
y
la
relación
con
el
entor
no
urbano
y
natural
y
la
elección
de
materiales
con
baja
huella
ecológica
que
son
indispensables
a
ser implementados en las islas (V
alencia, 2018).
Esta
investigación
tiene como
objetivo analizar
los
ujos
biofísicos
en
el
ciclo
de
vida
de
la
producción
de
ecoladrillos
en
Galápagos
para
determinar
su
impacto
sobre
el
ecosistema.
Se
analizaron
las
emisiones
de
dióxido
de
carbono
equivalente
(CO₂e), así como el consumo de materiales, agua
y
energía
en
cada
etapa
del
proceso
productivo.
Al
evaluar
estos
factor
es,
se
determinó
varios
indicadores de sostenibilidad sobr
e la producción
de
ecoladrillos
en
términos
de
eciencia
energética,
huella hídrica y de emisión de carbono.
13
La
Ley
Orgánica
de
Economía
Circular
Inclusiva
de
Ecuador
(2021)
dene
a
la
EC
como
un
modelo
que
busca
la
r
egeneración
y
restauración
de
los
ecosistemas
mediante
un
cambio
estratégico
en
la
producción
y
el
consumo
(Asamblea
Nacional,
2021).
Mientras
que,
el
Parlamento
Eur
opeo-
PE
(2023)
establece
que
la
EC
se
trata
de
un
enfoque
de
pr
oducción
y
consumo
que involucra
prácticas
como
el
compartir
,
alquilar
,
r
eutilizar
,
reparar
,
renovar
y
reciclar
materiales
y
productos
existentes,
con
el
propósito
de
generar
valor
agregado
y
,
de
esta
manera,
extender
el
ciclo
de
vida de los productos.
Especícamente
en
la
industria
de
la
construcción,
el
cambio
hacia
la
circularidad
r
equiere
centrarse
en
el
pensamiento
sistémico
para
compr
ender
todo
el
ciclo
de
vida
de
las
infraestructuras
y
la
cadena
de
valor
de
la
construcción
(Zimmann
et
al.,
2016).
Adoptar
los
principios
de
la
EC
y
un
diseño
ecológico
puede
reducir
signicativamente
el
consumo
de
recursos
y
el
impacto
ambiental,
promoviendo
un
uso
más
eciente
de
los
materiales de construcción (Munaro et al., 2020).
En
este
contexto,
un
ejemplo
destacado
se
encuentra
en
la isla
de
Bornholm,
Dinamarca.
Allí
se
llevó a
cabo
una investigación
para explorar
la
creación de una cadena de valor basada en un
sistema
de
producción
y
consumo
de
circuito
cerrado.
Durante
este
estudio,
se
realizar
on
pruebas
y
demostraciones
de
prácticas
destinadas
a
reutilizar
y
reciclar
residuos
de
construcción
y
demolición.
Los
resultados
indicar
on
la
viabilidad
de
casos
comerciales
positivos
para
la
demolición
selectiva,
siempre
y
cuando
se
establezcan mer
cados locales para
los materiales
de
construcción
reutilizados
(Christensen
et
al.,
2022).
La
EC en
la
construcción
va
más allá
de
la
gestión
de residuos e involucra toda la cadena de valor del
proceso
constructivo.
Comienza
en
la
etapa
de
planicación,
considerando
el
espacio
y
las
futuras
circunstancias para asegurar la per
durabilidad
2. EST
ADO DEL ARTE
2.1 Economía circular en la construcción
del
proyecto.
En
el
diseño
se
optimizan
los
materiales,
se
reduce
la
generación
de
residuos
y
se
adoptan
prácticas
como
la
construcción
modular
y
elementos
industrializados.
Además,
se
planica la
deconstrucción y se
fomenta el
uso de
productos
reutilizables
o
reciclables
al
nal
de
su
vida
útil
(Congreso
Nacional
de
Medio
Ambiente,
2018).
Así,
la
construcción
puede
evolucionar
de
un
enfoque
convencional
a
uno
alineado
con
principios sostenibles.
La
EC
se
alinea
con
la
construcción sostenible
al
aplicar
sus
principios
para
gestionar
de
manera
eciente
recursos
esenciales,
como
energía
y
agua,
desde
el
diseño
hasta
el
mantenimiento
y
rehabilitación
de
infraestructuras,
utilizando
además
materiales
sostenibles
y
repr
ocesados
con
baja
huella
ecológica.
Esto
conlleva
benecios
como
la
eciencia
energética,
la
optimización del uso del agua, la pr
olongación de
la vida
útil de
las infraestructuras,
la reducción de
costos
operativos
y
la
minimización
de
residuos.
Además,
esta
perspectiva
impulsa
el
desarrollo
de
bioempr
endimientos,
fortalece
la
resiliencia
al
cambio
climático
y
fomenta
la
creación
de
regulaciones, contribuyendo
a
la construcción
de
infraestructuras más responsables y r
esilientes.
En
Ecuador
,
se
han
logrado
avances
normativos
que
impulsan
una
construcción
más
eciente
en
términos
de
consumo
energético.
Estos
avances
incluyen
la
Norma
Técnica
Ecuatoriana
(NTE)
INEN
2506:2009
sobre
eciencia
energética
en
edicaciones
y
la
NTE
INEN
2507:2009
sobre
rendimiento
térmico
de
colectores
solares.
A
partir
de
2011,
se
desarr
olló
la
Norma
Ecuatoriana
de
Construcción
(NEC),
que
establece
parámetr
os
mínimos
de
seguridad
y
calidad
en
las
edicaciones,
optimiza
los
mecanismos
de
control
y
mantenimiento
en
los
pr
ocesos
constructivos,
entre
otros,
y
en
2018
se
publicó
la
normativa
especíca
de
eciencia
energética
(MIDUVI,
2018).
En
2019,
la
Ley
Orgánica
de
Eciencia
Energética
fue
pr
omulgada,
seguida
en
2021
14
por
su
reglamento,
que
obliga
a
cumplir
metas
sectoriales
de
eciencia
energética
y establece
un
proceso
de
evaluación
del
consumo
energético
para
nuevas
construcciones
y
r
emodelaciones
(Asamblea
Nacional,
2019).
Estas
normativas
están alineadas
con el
Plan Nacional
de Eciencia
Energética
(PLANEE)
2016-2035.
Sin
embargo,
su
aplicación
aún
no
es
efectiva
en
todo
el
territorio
y
no
contempla
la
cuanticación
de
la
huella
de
carbono en el ciclo de vida de las edicaciones.
Medir
y
reportar
las
emisiones
de
GEI
de
las
edicaciones
es
fundamental
para
producir
estrategias
signicativas
y
r
entables.
Aunque
las
metodologías de emisión de carbono varían entre
países, el
marco básico suele
ser el
proceso bien
establecido
del
Análisis
del
Ciclo
de
Vida
(ACV).
El
ACV
suele
considerar
un
enfoque
“de
la
cuna
a
la
cuna”,
en
el
que
los
productos
se
evalúan
sistemáticamente
a
lo
largo
de
toda
su
vida.
En
los
últimos
años,
ha
existido
un
mayor
interés
en
los
métodos
de
ACV
para
evaluar
edicaciones
y
productos
con
el
n
de
diseñarlos
de
manera
eciente
y
con
materiales
ambientalmente
preferibles (Fenner
, et al., 2018).
A
nivel
inter
nacional,
se
han
realizado
múltiples
investigaciones
sobre
el
ACV
en
bloques
y
ladrillos.
Un
ejemplo
notable
es
el
estudio
comparativo
realizado
en
Egipto
sobre
las
emisiones
de
carbono
y
la
energía
incorporada
en
ladrillos secados al sol versus ladrillos de arcilla
cocida
a
través.
Los
resultados
mostraron
que,
por
cada
1,000
ladrillos
cocidos
producidos,
la
energía
incorporada
calculada
es
de
4,250
MJ
y
el
carbono
incorporado
de
5,502
kg
de
CO₂e,
mientras
que,
para
los
ladrillos
secados
al
sol,
solo
se
necesitan
0.033
MJ
de
energía
incorporada
y
se
emiten
0.24 kg
de
CO₂e
(Dabaieh,
et
al.,
2020).
Otra
investigación
en
Argentina,
realizada
por
Saez
y
Garzón
(2020),
analizó
la
huella
de
carbono en
bloques elaborados
con polipropileno
post-consumo.
La
metodología
utilizada
fue
la
propuesta
por
las
Normas
IRAM-ISO
14040
y
IRAM-ISO
14044,
que
se
enfocan
en
el
ACV
.
2.2 Cuanticación de CO₂ en la construcción
Los
r
esultados
indicaron que
la fabricación
de
un
metro
cuadrado
del
prototipo
en
estudio
genera
11.37 kg CO₂e.
En
Ecuador
,
la
investigación
de
V
illota
(2023)
calculó
la
huella
de
carbono
de
la
fabricación
de
ladrillos
artesanales
en
la
parr
oquia
Sinincay
,
Cuenca, utilizando la
norma UNE-EN ISO 14064-
1:2019.
Los
resultados
mostraron
que
las
emisiones
directas
e
indirectas
en
la
producción
anual
de
360,000
ladrillos
artesanales
fueron
de
72.74 toneladas de CO₂e.
En
Galápagos,
aún
no
se
han
realizado
estudios
sobre
la cuanticación
de carbono
en
el
sector de
la
construcción
o
los
materiales
de
construcción.
No
obstante,
se
han
encontrado
otros
estudios
relevantes.
Por
ejemplo,
en
la
isla
Santa
Cruz,
el
proyecto
Huella
de
Ciudades
calculó
la
huella
de
carbono.
En
la
ciudad
de
Puerto
A
yora,
se
estableció
la
línea
de
base
de
las
huellas
de
carbono
e
hídrica
para
el
año
2015.
Las
emisiones
totales
de
GEI
fuer
on
de
45,353
toneladas
de
CO₂e, repr
esentando aproximadamente el 0.01%
de
las
emisiones
totales
de
Ecuador
en
2011
reportadas
en
su
Segunda
Comunicación
sobre
Cambio Climático en 2011 (CAF
, 2017).
El
Plan
Galápagos
2030,
emitido
en
2021,
promueve
la
construcción
sostenible
y
ambientalmente
amigable,
adaptada
al
contexto
insular
de
las
islas.
Entre
sus
metas
principales
se
incluyen
la
descarbonización
de
Galápagos
y
la
reducción
del
20%
en
la
huella
de
carbono
y
el
consumo
de
agua
en
los
asentamientos
humanos
y
las
principales
15
3. METODOLOGÍA
actividades
económicas.
Además,
como
objetivo
estratégico,
propone
identicar
oportunidades
para
disminuir el
uso de
combustibles
fósiles
en el
transporte marítimo
y el sector
hotelero,
mediante
la
implementación
de
estándares
y
normas
de
eciencia
energética
(CGREG,
2021). Para
apoyar
sus
metas y
objetivos,
es crucial
realizar estudios
sobre
las
emisiones
de
CO₂
en
el
sector
de
la
construcción
en
Galápagos.
Estos
estudios
son
necesarios
para
compr
ender
el
impacto
r
eal
de
la
construcción
y
proporcionar
información
valiosa
para los tomadores de decisiones.
En
Galápagos,
se
ha
comenzado
a
producir
y
utilizar
bloques
y
ladrillos
ecológicos
como
parte
de
un
esfuerzo
por
emplear
materiales
más
sostenibles
y
locales.
Diversos
estudios
han
explorado
el
potencial
de estos
bloques ecológicos
para el
aislamiento de
edicaciones
y
han
demostrado
que
ofrecen
un
rendimiento
energético
superior
al
de
los
bloques
convencionales (Prato
& Schiavi,
2015).
Un
estudio
realizado
en
la
isla
de
Mauricio
destaca
los
benecios
de
los
bloques
ecológicos
en
la
mejora
del
confort
térmico
de
los
edicios.
Joyram, Govindan
y Nunkoo (2024)
informan que
la
tecnología
de
bloques
ecológicos
se
introdujo
para
r
educir
el
consumo
de
energía
necesario
para
enfriar
los
espacios,
especialmente
durante
el
verano,
cuando
las
temperaturas
superan
los
35
°C.
En
otro
estudio
de
2015,
The
United
Basalt
Products
Ltd
evaluó
el
desempeño
energético
de
dos
edicios
similares
en
Mauricio:
uno
construido
con
bloques
convencionales
y
el
otro
con
ecobloques. Los
resultados
demostraron
que
los
ecobloques
son
tres
veces
más
ecientes
en
Se
utilizó
la
metodología
del
ACV
para
identicar
el proceso de pr
oducción de los ecoladrillos en
Galápagos.
El
alcance abar
có
desde el
transporte
de materiales a las
islas hasta el apilado
y secado
del
producto
nal,
incluyendo
las
emisiones
y
el
consumo
de energía
relacionados
con productos
fabricados,
como
el
cemento.
La
información
obtenida
fue
mediante
un
enfoque
bottom
up,
para
lo
cual
se
estructuró
un
diagrama
input-output
términos
de
resistencia
térmica.
Además,
el
edicio
con
ecobloques
requirió
signicativamente menos
electricidad
para
enfriar
el
espacio
en
comparación
con
el
edicio
de
bloques
convencionales
(Joyram,
Govindan, & Nunkoo, 2022).
En
Argentina,
González
(2014)
documentó
la
fabricación
de
bloques
de
paja
y
arcilla
para
rellenar par
edes envolventes en la Patagonia
Andina.
La
energía
incorporada
y
las
emisiones
de CO₂ fuer
on de 40 MJ y
3.4 kg CO₂e por metr
o
cuadrado
de
par
ed
cubierta
con
bloques
de
paja
y
arcilla,
respectivamente.
Estas
cifras
son
considerablemente menor
es en
comparación con
las
de
los
ladrillos
cocidos
comunes
(481
MJ/m²
de
pared
y
38
kg CO₂e/m²
de
pared)
y
los
bloques
de hormigón (141 MJ/m² de pared y 11 kg CO₂e/
m² de pared).
Por
lo
tanto,
los
bloques
y
ladrillos
ecológicos
se
han
consolidado
internacionalmente
como
una
alter
nativa
atractiva
fr
ente
a
los
bloques
de
hormigón
convencionales,
gracias
a
su
capacidad
para
mejorar
la
eciencia
energética
de
las
edicaciones y
su menor impacto
ambiental en
la
fabricación.
Se
presume
que el
uso de
reciclados,
disminuirían
la
intensidad
energética
y
sus
emisiones
de
CO₂,
sin
embargo,
la
presencia
de
energía
y
materiales
imprevistos
en
los
procesos
especícos
de
su
pr
oducción,
la
tecnología
y
la
localización
pueden
impactar
en
la
sostenibilidad
a largo plazo.
de
ujos
biofísicos,
considerando
las
entradas
de
ujos:
energía
(electricidad
y
combustibles),
actividad
humana,
materiales,
agua
y
las
salidas
de
ujos:
emisiones
de
CO₂e
y
r
esiduos
sólidos
(Gráco
1).
Además,
se
identicaron
los
materiales
y
emisiones
propios
de
las
islas
y los
provenientes
del continente.
16
Gráco 1.
Propuesta de ACV del pr
oceso productivo
Fuente: Elaboración propia
Para estimar
las emisiones
de CO₂e,
se aplicaron
los
principios
del
Protocolo
de
GHG,
los
factores
de
emisión
del
Grupo
Interguber
namental
de
Expertos
sobre
el
Cambio
Climático
(IPCC)
de
2006
y
factores
propios
del
Sistema
Nacional
Interconectado
(SNI), para las
emisiones, además
del
análisis
de
las
tasas
de
r
etorno
energético
determinadas para cada subproceso.
Finalmente,
se
identicaron
las
variables
intensivas,
que
se
reer
en
a
la
cantidad
de
recursos
asociados
con la
producción de
un solo
ecoladrillo, como
la
energía consumida (Joules/ecoladrillo), materiales
necesarios
(m³/ecoladrillo),
el
consumo
de
agua
(m³/ecoladrillo)
y
el
trabajo
realizado
(horas-trabajo/
ecoladrillo).
Las
variables
intensivas
son
útiles
para
estimar
los
posibles
impactos
ecosistémicos
en
las
islas,
ya
que
pueden
convertirse
en
variables
extensivas.
Las
variables extensivas,
por su
parte,
reejan
el
total
de
recursos
asociados
con
la
producción completa
de
los
ecoladrillos, como
el
total
de
energía
consumida,
el
volumen
total
de
agua y materiales utilizados y las horas de
trabajo
empleadas.
La
población
y
muestra
del
estudio
comprende
los
proveedor
es
de
mampostería
ecológica
disponibles
en
las
islas
Galápagos.
Se
identicaron
dos
iniciativas
en
Santa
Cruz
dedicadas
a
la
producción
de
mampostería
ecológica:
la
constructora
Garden
House
Design
(GHD)
y
ReciclArte.
Por
lo
tanto,
se
decidió
aplicar
un
muestreo
no
probabilístico
por
conveniencia,
dada
la
escasez
de
proveedor
es
en
las
islas.
La
constructora
GHD
fue
seleccionada
como
objeto
de
estudio,
dado
que
actualmente
se
dedica
a
la
producción
de
ecoladrillos
y
cuenta
con
la
maquinaria necesaria.
Se
trabajó
con
información
secundaria
de
diversas
fuentes
bibliográcas
y
estadísticas
para
complementar
las
brechas
de
datos,
especialmente
en
lo
refer
ente
al
consumo
de
combustible
desde
continente
hacia
las
islas,
así
como
emisiones
y
energía
incorporada
del
cemento.
Además,
se
aplicaron
los
factores
de
emisión del IPCC y factores pr
opios del SNI.
Adicionalmente,
se
diseñó
y
se
levantó
un
cuestionario
semiestructurado
de
entrevista
in
situ
en
el
mes
de
marzo
de
2024
que
incluyó
preguntas
abiertas
realizada
a
actores
estratégicos
presentes
en
los
subprocesos
del
sistema
de
producción
para recabar información
primaria sobre los
ujos
biofísicos.
La
constructora
GHD
está
ubicada
en
Santa
Cruz,
El
Cascajo, vía
a
la
playa
El Garrapater
o (Figura
1),
produce
ecoladrillos
a
partir
de
vidrio
reciclado
y
utiliza
maquinaria
eléctrica
únicamente
para
dos
procesos
(pr
ensado
y
la
limpieza).
Está
equipada
con
diferentes
moldes
de
hierro
intercambiables
y
de
tamaño
variable,
que
permiten
fabricar
ecoladrillos según
las dimensiones requeridas del
producto
nal. En
noviembre
de 2022,
alcanzaron
su
mayor
producción
con
16,800
ecoladrillos,
cifra
que
se
tomó
como
referencia
para
el
estudio.
17
Figura 1.
Ubicación del estudio
Fuente: Elaboración propia
De acuerdo con los principios del Protocolo GHG
realizado
por
(WRI,
WBCSD,
&
SEMARNA
T
,
2005),
las
emisiones
del
estudio
corresponden
al
Alcance 2 (emisiones indir
ectas de GEI asociadas
a
la
electricidad),
debido
al
uso
de
dos
maquinarias
para el proceso de pr
ensado y limpieza.
El
estudio
también
abarca
el
Alcance
3
(otras
emisiones
indirectas),
que
incluye
las
emisiones
resultantes
de
las
actividades
de
la
empresa,
pero que
provienen
de
fuentes
que
no
son de
su
propiedad
ni
están bajo
su
control.
Dentro
de
este
alcance,
se
identicaron
dos
fuentes
principales:
a)
las
emisiones
asociadas
al
consumo
de
combustible
para
el
transporte
de
materiales
y
el
combustible
utilizado
para
generar
electricidad
en
las
islas,
y
b)
las
emisiones
asociadas
a
la
producción de cemento.
En
cuanto
al
transporte
de
materiales
para
la
producción
de
los
16,800
ecoladrillos,
el
tiempo
estimado
de
viaje
desde
Guayaquil
hasta
Santa
Cruz
es
de
5
días
(MTOP
,
2021).
Según
la
cha
técnica
del
buque
Fusion
2,
que
opera
en
esta
ruta,
el
consumo
estimado
de
combustible
es
de
2,966
galones
de
diésel
oil
por
día.
Esto
equivale
a
un
total
de
14,830
galones
de
diésel
consumidos en los
5 días de viaje.
El buque tiene
una
capacidad
máxima
de
373
contenedores
de
20
pies y
un
tonelaje neto
de
2,052.33
toneladas
(Pacic
Cargo
Line,
2020).
Por
lo
tanto,
transportar
una carga de 144 quintales de cemento de 50 kg
(7.2 toneladas)
requeriría
52.03 galones
de diésel.
Para
calcular
el
consumo
de
combustible
en
el
transporte
de
diésel
y
gasolina
de
Guayaquil
a
Santa
Cruz,
se
tomó
como
refer
encia
el
buque
ALF
A
007,
que
transporta
10,000
barriles
de
diésel
(420,000
galones)
y
5,000
barriles
de
gasolina
(210,000
galones),
y
tar
da
dos
días
en
llegar
a
Santa
Cruz
(CGREG,
2019).
Según
la
cha
técnica
del
buque,
tiene
un
consumo
diario
de
3,170
galones
de
diésel
oil
(Consulat,
2014),
por
lo
que
consumiría
6,340
galones
de
diésel en
los
dos
días.
Por
lo
tanto,
transportar
34
galones
de
gasolina
necesarios
para
transportar
los
materiales
al
interior
de
Santa
Cruz
requiere
0.342
galones
de
diésel.
Asimismo,
se
requier
en
17.28
galones
de
diésel
para
la
generación
de
electricidad
del
proceso
productivo,
y
su
transporte
desde
Guayaquil requeriría 0.1739 galones de diésel.
4. RESUL
T
ADOS Y ANÁLISIS
4.1 Alcance de emisiones y ener
gía incorporada
18
En
referencia
a
las
emisiones
del
cemento,
investigaciones
internacionales
informan
que
la
producción
de
1
tonelada
de
cemento
Portland
produce
aproximadamente
900
kg
de
emisiones
de
CO₂
(Dey
,
et
al.,
2023;
Benhelal,
et
al.,
2013).
Sin
embargo,
en
la
memoria
de
sostenibilidad
de
Holcim
Ecuador
2019/2020,
informan
que
la
intensidad
de
emisiones
es
552
kg
CO₂
neto
por
tonelada
material
cementante
(Holcim,
2021).
Se
va
a
tomar
como
referencia
este
último
valor
,
dado
que
es
una
empr
esa
que
opera
en
el
país.
Por
lo
tanto,
un
quintal
de
cemento
de
50
kg
emite
alrededor
de 27.6
kg de
CO₂e, y
los 144
quintales
de
cemento
necesarios
para
producir
los
16,800
ecoladrillos generarían 3,974.40 kg de CO₂e.
En cuanto a la energía necesaria para el proceso
productivo,
según
la
investigación
de
(León
&
Guillén,
2020),
la
energía
incorporada
en
la
producción
de
una
tonelada
de
cemento
es
de
3,191.95
MJ.
Los
principales
aportes
de
energía
provienen del uso
de caliza,
fuel oil
y electricidad.
Por
lo
tanto,
para
producir
16,800
ecoladrillos,
que
r
equieren
7.2
toneladas
de
cemento,
se
necesitarían 0.02298 TJ de energía.
De
esta
manera,
considerando
el
consumo
de
combustibles
y
energía
en
la
producción
de
16,800
ecoladrillos,
se
requier
e
un
total
de
0.0369
TJ (T
abla 1).
T
abla 1.
Energía incorporada por proceso y material
Fuente: Elaboración propia con datos de GHD (2024), León & Guillén (2020) y CENACE (2020)
19
El
ACV
(Gráco
2)
reveló
que
la
producción
de
16,800
ecoladrillos
genera
emisiones
indirectas
de
5
toneladas
de
CO₂e.
Esto
implica
que
la
Las
emisiones
indirectas
relacionadas
con
el
cemento
constituyen
el
79.40% de
las
emisiones
totales y
además contiene el
62.2% de
la energía
incorporada
del
ecoladrillo,
es
un
dato
r
elevante
dado
que
son
emisiones
y
energía
contabilizada
desde
continente
y
que
frecuentemente
son
obviadas
en
los
análisis
tradicionales.
Mientras
que
la
etapa
de
transporte
de
materiales,
con
un
17.05%,
es
la
segunda
mayor
generadora
Gráco 2.
Visualización del ciclo de vida de la producción de ecoladrillos (2022)
Fuente: Elaboración propia con datos de GHD (2024)
4.2 Análisis del Ciclo de Vida
producción
de
cada
ecoladrillo
con
dimensiones
de 12cmx8cmx25cm
(2,400 cm³)
emite 0.297
kg
de CO₂e.
de
emisiones
y
contiene
el
31.1%
de
la
energía
incorporada.
Por
otro
lado,
las
emisiones
indirectas
relacionadas con la electricidad r
epresentan tan
solo
el
3.55%
y
contienen
el
6.5%
de
energía
incorporada,
es
mínimo,
ya
que
gran
parte
del
proceso es artesanal y se r
ealiza manualmente.
En
cuanto
a
los
materiales,
la
producción
de
ecoladrillos
se
basa
principalmente
en
agua,
que
20
repr
esenta
el
60.65%
del
total,
seguido
de
arena
con
el
28.52%
y
polvo
de
vidrio
con
el
8.55%.
Caso
contrario,
el
cemento
constituye
solo
el
2.29% de los materiales utilizados.
A partir
de ACV
se calcularon variables intensivas
y
extensivas
(T
abla
2).
Las
variables
intensivas
se
obtuvieron
dividiendo
las
variables
extensivas
entre
el
total
de
16,800
ecoladrillos
producidos.
Con
estos
datos,
se
pueden
estimar
fácilmente
los
r
equerimientos
futuros
de
materiales
si
la
demanda
de
ecoladrillos
aumenta
en
las
islas
(Autor
,
Bukkens,
&
Giampietro,
2020;
Autor
,
Di
Felice,
Giampietro,
&
Ramos,
2018).
Estos
valores son importantes
para discutir los
posibles
Por
otr
o
lado,
una
jor
nada
laboral
estándar
en
Ecuador
compr
ende
160
horas
al
mes.
La
variable
de
trabajo
muestra
que
la
pr
oducción
de
ecoladrillos
requiere
de
3.34
personas
al
mes
para
mantener
ese
ritmo
de
producción.
No
obstante,
se
ha
determinado
que
la
capacidad
de
producción
de
ecoladrillos
podría
aumentar
considerablemente
según
la
demanda,
lo
cual
incrementaría
la necesidad
de mano
de obra
y
, en
consecuencia, fomentaría el empleo en las islas.
De
acuerdo
con
GADM
Santa
Cruz
(2009),
en
2009
la
mina
Granillo
Rojo
tenía
un
volumen
de
1,908,698
m³
de
material
y
la
tasa
de
extracción
de
la
mina
es
de
81,206.63
m³
(DPNG,
2013).
Lo
que
indicaría que
para 2023 su
volumen se reduciría
a
impactos
sobre
el
ecosistema,
dado
que
en
Galápagos
existe
escasez
de
ar
ena,
energía
y
agua (Galapagos Conservation T
rust, 2015).
T
abla 2.
V
ariables intensivas y extensivas
Fuente: Elaboración propia con datos de GHD (2024)
771,805.18
m³.
Si
se
mantiene
la
misma
tasa
de
extracción los
recursos
se acabarían en
9.5 años.
Para
comparar
los
resultados,
se
utilizar
on
los
hallazgos
de
la
investigación
de
(Urgilés
&
V
anessa,
2017),
quienes
elaborar
on
el
Inventario
del
Ciclo
de
V
ida
de
un
bloque
de
hormigón
convencional
en
la
ciudad
de
Cuenca.
Este
estudio
fue
seleccionado
porque
también
consideró
tanto
la
energía
incorporada
como
las
emisiones
de
CO₂
asociadas
al cemento.
Según
su investigación,
la
energía
incorporada
y
las emisiones
de
CO₂
para
un
bloque
de
10cmx20cmx40cm
(8,000
cm³)
son de 8.34
MJ por bloque y 0.83
kg de CO₂ por
bloque.
21
En
el
pr
esente
estudio,
se
evaluó
un
ecoladrillo
de 12cmx8cmx25cm (2,400
cm³) y se obtuvieron
valores
de
2.2
MJ
por
ecoladrillo
y
0.297
kg
de
CO₂/ecoladrillo.
Si
se
ajustaran
las
dimensiones
del
ecoladrillo
para que
tuviera el
mismo
volumen
que
el
bloque
de
hormigón
(8,000
cm³),
el
ecoladrillo
emitiría 7.3
MJ y 0.97
kg de CO₂
por unidad. Esto
signica
que,
en
comparación
con
el
bloque
de
hormigón,
la energía
incorporada en
el
ecoladrillo
se
reduciría
en
un
12.5%,
pero
las
emisiones
de
CO₂ aumentarían en un 16.8%.
El uso de vidrio reciclado en lugar de otr
os
materiales
probablemente
redujo
la
energía
incorporada
en
la
fabricación
del
ecoladrillo.
Los
materiales
reciclados
suelen
requerir
menos
energía
para
un
nuevo
procesamiento,
dado
que
ya
tienen
un
proceso
productivo
detrás
de
ellos,
a
difer
encia
de
los
materiales
vírgenes
utilizados
en
la
fabricación
de
bloques
de
hormigón.
Sin
embargo, este ahorr
o de energía no
se tradujo en
una
reducción
de
las
emisiones
de
CO₂;
de
hecho,
estas
aumentaron
un
16.8%.
Este
incremento
se
debe a
factor
es como
el transporte
de materiales
desde continente
y el
uso de
combustibles fósiles
para generar la electricidad necesaria para la
producción de los ecoladrillo.
La
metodología
empleada
permitió
identicar
datos
fr
ecuentemente
omitidos
en
los
análisis
tradicionales,
como
las
emisiones
y
el
consumo
de energía
asociados al
transporte de materiales,
así
como
las
emisiones
y
la
energía
incorporada
en
un
material.
Los
resultados
revelar
on
que,
aunque
el
cemento
repr
esenta
solo
el
2.29%
de
los
materiales
utilizados,
es
responsable
del
79.40%
de
las
emisiones
totales
y
del
62.2%
de
la
energía
incorporada.
Esto
reeja
el
extenso
proceso
productivo
detrás
de
este
material
y
resalta
la
urgencia
de
encontrar
alternativas
más
sostenibles.
En Galápagos se están adoptando prácticas
de
EC
en
la
construcción,
como
la
producción
de
ecoladrillos
a
partir
de
vidrio
reciclado.
Esta
iniciativa
promueve
el
reciclaje
de
vidrio
a
través
de
la
recolección
voluntaria
y
la
limpieza
costera.
El
vidrio
r
ecolectado
se
transforma
en
polvo,
extendiendo su vida útil
como materia prima para
otros
procesos
productivos,
cumpliendo
así
con
los
principios
del
ciclo
técnico
del
diagrama
de
mariposa
de
la
EC.
Además,
se
ha
identicado
en
las
islas
la
adopción
de
prácticas
sostenibles,
5. CONCLUSIONES
como
la
reutilización
del
agua
de
lluvia
y
la
reutilización de los desechos.
Dado
que
las
nuevas
construcciones
repr
esentarán
solo el 5% del par
que edicado futur
o (Eur
oclima
y
Mentefactura,
2020),
se
concluye
que
el
verdader
o
impacto
de
los
ecoladrillos
se
podría
lograr
al
implementarlos
en
la
remodelación
de
las
9,627
viviendas,
para
mejorar
su
eciencia
energética.
Además,
deberían
ser
una
prioridad
en las nuevas
construcciones y futuros pr
oyectos
inmobiliarios
de
las
islas,
lo
que
contribuiría
a
cumplir
la
meta
clave
del
Plan
Galápagos
2030
de
reducir
la
huella
de
carbono
y
agua
de
los
asentamientos humanos.
El
estudio
evidencia
que
por
cada
ecoladrillo
fabricado
se
emiten
0.297
kg
de
CO₂e.
Además,
muestra
la
necesidad
de
materiales
y
recursos:
se
requier
en
0.0019286
m³
de
arena,
0.0001548
m³
de
cemento,
0.0041030
m³
de
agua, 0.0000022
TJ de
energía y 0.032
horas de
trabajo.
La
demanda
de
estos
materiales
puede
tener
impactos
en
el
ecosistema
sensible
de
Galápagos,
como
el
agotamiento
de
las
minas
y
22
el
agua,
que
es
escasa
en
Santa
Cruz
y
se
destina
al pr
oceso de
producción
en lugar
de al
consumo
humano. T
ambién existe
la posibilidad de que,
en
el futur
o, los
materiales reciclados,
como el
vidrio,
no
cubran la
demanda, lo
que obligaría
a
importar
desde continente.
Los
autores
agradecen
a
la
empr
esa
Mentefactura, a través del proyecto Living Lab de
Edicación
Sostenible, a
la
Fundación
Vive
W
orld
in
Cooperation
(VWC)
y
a
la
constructora
GHD
6. AGRADECIMIENTOS
7. REFERENCIAS
por
facilitar
el
levantamiento
de
la
información
necesaria
y
por
el
respaldo
brindado
durante
la
investigación.
Asamblea Nacional. (2019). Ley Orgánica de Eciencia Enegética. Quito: Lexis.
Asamblea Nacional. (2021).
Ley Orgánica de
Economía Circular
Inclusiva. Quito: Registr
o Ocial Suplemento No.
488.
Autor
,
Bukkens,
S.,
&
Giampietro
, M.
(2020).
Exploration
of
the
environmental
implications of
ageing
conventional
oil reserves with r
elational analysis. Elservier: Science of The T
otal Environment.
Autor
, Di Felice, L., Giampietro, M., & Ramos, J. (2018). The metabolism of oil extraction: A bottom-up approach
applied to the case of Ecuador
. Elservier: Energy Policy
, 63-74.
Benhelal,
E.,
Zahedi,
G.,
Shamsaei,
E.,
&
Bahadori,
A.
(2013).
Global
strategies
and
potentials
to
curb
CO2
emissions in cement industry
. Elsevier: Journal of Cleaner Production, 142-161.
CAF
.
(2017).
La
isla
Santa
Cruz,
Ecuador
,
calculó
su
huella
de
carbono
para
impulsar
un
crecimiento
bajo
en
emisiones.
Obtenido
de
https://www
.caf.com/es/actualidad/noticias/2017/04/santa-cruz-medira-su-huella-de-
carbono-para-impulsar
-un-crecimiento-bajo-en-emisiones/
CAF
. (2021). Climate Change: The New Evolutionary Challenge for the Galapagos. Green Climate Found.
CCQ.
(2023).
La
construcción
y
operación
genera
el
38%
de
gases
de
efecto
inver
nader
o
a
nivel
mundial.
Obtenido
de https://ccq.ec/la-construccion-y-operacion-genera-el-38-de-gases-de-efecto-invernadero-a-nivel-mundial/
CENACE. (2020). Factor de emisión del Sistema Nacional Interconectado del Ecuador
.
CGREG.
(2019).
Buque
ALF
A
007
reemplaza
temporalmente
al
bar
co
Isla
Puná.
Obtenido
de
https://www
.
gobiernogalapagos.gob.ec/buque-alfa-007-reemplaza-temporalmente-al-barco-isla-puna/
CGREG.
(2021).
Plan
de
Desarrollo
Sustentable
y
Ordenamiento
T
erritorial
del
Régimen
Especial
de
Galápagos
2030. Puerto Baquerizo Moreno, Galápagos, Ecuador
.
Christensen,
T
.,
Johansen,
M.,
Buchard,
M., &
Glarborg,
C.
(2022).
Closing
the
material
loops
for
construction
and
23
demolition waste:
The circular
economy on
the island
Bor
nholm, Denmark.
Resources, Conservation
& Recycling
Advances.
Congreso Nacional de Medio Ambiente. (2018). Economía Cir
cular en el sector de la construcción. Madrid.
Consulat. (2014).
Estudio de
Impacto Ambiental
Expost y Plan
de Manejo
de la
Operación del Buque
T
anque Alfa
007 en
los segmentos naviero nacional,
internacional e
industrial con recorrido en
las provincias de Esmeraldas,
Manabí, Santa Elena, Guayas y El Oro. Guayaquil.
Dabaieh, M.,
Heinonen, J.,
El Mahdy
, D.,
& Maguid,
D. (2020).
A comparative
study of life
cycle carbon
emissions
and embodied energy between sun-dried bricks and red clay bricks. Elservier: Journal of Cleaner Production.
Dey
,
A.,
Rumman,
R.,
W
akjira,
T
.,
Jindal,
A.,
Bediwy
,
A.,
Islam,
M.,
.
.
.
Sabouni,
R.
(2023).
T
owards
net-zero
emission:
A
case
study
investigating
sustainability
potential
of
geopolymer
concr
ete
with
recycled
glass
powder
and gold mine tailings. Elsevier: Journal of Building Engineering.
DPNG. (2013). Control y Registro de Movilización de
Recursos Pétreos . Obtenido de https://galapagos.gob.ec/
control_y_r
egistro_movilizacion_recursos_petr
eos/
Euroclima
y Mentefactura. (2020).
ProDoc
del pr
oyecto “Living Lab
de edicación
sostenible” implementado
en el
archipiélago de Galápagos. Galápagos.
Fenner
,
A.,
Kibert,
C.,
Woo,
J.,
Morque,
S.,
Razkenari,
M.,
Hakim,
H.,
&
Lü,
X.
(2018).
The
carbon
footprint
of
buildings:
A
review
of
methodologies
and
applications.
Elservier:
Renewable
and
Sustainable
Energy
Reviews,
1142-1152.
FFLA.
(2023).
Presentación
de r
esultados
del
Proyecto
CEELA en
Ecuador para
la Ecuador
Green
Building
Week.
Cuenca.
GADM Santa Cruz. (2009).
Plan De Desarr
ollo Y Or
denamiento T
erritorial Cantón Santa Cruz
2012 - 2027. Santa
Cruz.
Galapagos
Conservation
T
rust.
(2015).
Energia
Renovable
y
Construcción
Sostenible.
Recuperado
el
2024,
de
http://blog.discoveringgalapagos.org.uk/es/energia-renovable-constuccion-sostenible/
González.
(2014).
Energy
and
carbon
embodied
in
straw
and
clay
wall
blocks
produced.
Elsevier:
Energy
and
Buildings, 15-22.
Holcim. (2021). Memoria de sostenibilidad 2019/2020.
INEC. (2015). T
abulados del Censo de Población y Vivienda – Galápagos 2015. Galápagos.
INEC. (2023). Censo Ecuador 2022 tabulados: Condiciones generales de las viviendas.
Islam,
M., Noaman,
M.,
Islam,
K., &
Hanif,
M.
(2024). Mechanical
properties
and
microstructur
e
of brick
aggregate
concrete with raw y ash as a partial r
eplacement of cement. Heliyon, 10.
Joyram, H., Govindan,
K., & Nunkoo, R.
(2022). A compr
ehensive review on
the adoption
of insulated block/eco-
block as a green building technology fr
om a resident perspective. Cleaner Engineering and T
echnology
.
Joyram, H., Govindan, K., & Nunkoo, R. (2024). Development of a novel psychological model to predict the eco-
block building adoption in Mauritius. Cleaner and Responsible Consumption.
24
León,
A.,
& Guillén,
V
.
(2020).
Energía contenida
y
emisiones
de CO2
en
el
proceso de
fabricación
del
cemento
en Ecuador
. Scielo Brasil.
MIDUVI.
(2018).
Norma
Ecuatoriana
de
Construcción:
Eciencia
energética
en
ediciaciones
residenciales
(EE).
Ministerio de Desarrollo Urbano y Vivienda (MIDUVI).
MTOP
.
(2021).
Itinerario
de
T
ransporte
Marítimo
de
carga
hacia
Galápagos.
Obtenido
de
https://www
.
gobiernogalapagos.gob.ec/wp-content/uploads/downloads/2022/11/2022-10-25_Of_Nro_MTOP-SPTM-22-
714-OFSCY
-SCX.pdf
Munaro,
M.,
T
avares,
S.,
&
Bragança,
L.
(2020).
T
owards
circular
and
more
sustainable
buildings:
A
systematic
literature r
eview on the circular economy in the built environment. Elsevier: Journal of Cleaner Production.
Pacic
Cargo
Line.
(2020).
Estudio
de
Impacto
Ambiental
Expost
y
Plan
de
Manejo
Ambiental
Del
Proyecto
Operación
del
Buque
de
Carga
Fusion
2
desde
el
muelle
Stor
ocean
y
Caraguay
(Guayaquil),
hacia
las
Islas
Galápagos, Santa Cruz-San Cristóbal. Galápagos.
Parlamento Europeo. (2023). Economía cir
cular: denición, importancia y benecios.
Prato,
A.,
&
Schiavi,
A.
(2015).
Sound
insulation
of
building
elements
at
low
frequency:
a
modal
appr
oach.
ScienceDirect: Energy Pr
ocedia, 128 – 133.
Saez,
V
.,
&
Garzón,
B.
(2020).
Análisis
de
la
huella
de
carbono
en
bloques
resuelto
conpolipropileno
post-consumo.
Arquitecno, 47-55.
Urgilés,
D.,
&
V
anessa,
G.
(2017).
Inventario
del
ciclo
de
vida para
la
determinación
de
la
energía
incorporada
y
las
emisiones
de
CO2 en
el pr
oceso
de
elaboración del
bloque en
una fábrica
de Cuenca
–
Ecuador
.
Universidad
de Cuenca.
V
alencia,
D. (2018).
La
vivienda sostenible,
desde un
enfoque
teórico y
de política
pública
en Colombia.
Revista
Ingenierías Universidad de Medellín, 40-56.
Villota,
D.
(2023).
Cálculo
de
la
Huella
de
Carbono
para
la
fabricación
de
ladrillos
artesanales
en
la
parroquia
Sinicay
, Cuenca Ecuador
. Cuenca: Universidad Internacional de la Rioja.
WRI,
WBCSD,
&
SEMARNA
T
.
(2005).
Protocolo
de
Gases
de
Efecto
Inver
nader
o:
Estándar
corporativo
de
contabilidad y reporte. México.
Zimmann,
R.,
O’Brien,
H.,
Hargrave,
J.,
&
Morrell,
M.
(2016).
The
Circular
Economy
in
the
Built
Envir
onment.
London: ARUP
.
25
Identicación de los posibles Impactos
Ambientales de la pr
oducción de
hidrógeno ver
de a partir de pr
oyectos
eólicos oshor
e. Caso de Estudio:
Zona Económica Exclusiva de Uruguay
Identication of Potential Envir
onmental Impacts fr
om
Gr
een Hydr
ogen
Pr
oduction thr
ough Oshore W
ind Pr
ojects:
A Case Study in Uruguay’
s
Exclusive Economic Zone
Luisa Rivas
1
, Alice Elizabeth González
2
, Alejandro Gutierr
ez
3
Recibido: 02/10/2024 y Aceptado: 03/12/2024
1.- Universidad de la Republica del Uruguay
luisarivas10@gmail.com
ORCID: 0009-0002-5662-2573
2.- Universidad de la Republica del Uruguay
elizabet@ng.edu.uy
ORCID: 0000-0002-2827-5052
3.- Universidad de la Republica del Uruguay
aguti@ng.edu.uy
ORCID: 0000-0002-0769-3861
26
27
El
pr
esente
trabajo
identica
los
potenciales
impactos
ambientales
de
la
producción
de
hidrógeno
verde
en
proyectos
eólicos
oshore
en
la
Zona
Económica
Exclusiva
de
Uruguay
.
El
Hidrógeno
verde
es
una
alter
nativa
para
descarbonizar
el
sector
energético.
La
eólica
oshore,
dado
la
potencia
nominal
de
los
aer
ogeneradores,
ofr
ece
mayor
potencial de
generación eléctrica,
pero conlleva
mayor
es
costos
y
complejidades técnicas. Se
examinan las actividades
durante las etapas de
desarr
ollo,
construcción y
operación.
A
partir
de
la
revisión
de
investigaciones
ambientales
sobre
proyectos
similares,
se
identican
los
impactos
ambientales
principales
en
cada
fase.
Durante
el
desarrollo,
se
observan
impactos
como
aumento de
ruido,
vibraciones
y alteraciones
en
el
lecho marino
debido
a
estudios geofísicos
y
geotécnicos.
En construcción,
el dragado
y
la instalación
de fundaciones
y
cables pueden
suspender
sedimentos,
afectar
la
calidad
del
agua
y
aumentar el
ruido
afectando
la
fauna
marina.
En
operación,
los
impactos
incluyen
colisiones
de
aves
y
aumento
del
ruido
submarino.
La
desalinización
del
agua
puede alterar la calidad del agua, pero conserva los r
ecursos hídricos terrestres.
Esta
investigación busca
ofrecer
una
visión
integral
que sirva
de
base
para
la toma
de
decisiones de
los
responsables de políticas, los desarr
olladores de proyectos y actor
es clave.
This paper
analyzes the potential
environmental impacts
of green
hydrogen pr
oduction in oshor
e wind
projects in Uruguay’
s Exclusive Economic Zone. Green hydr
ogen is an alternative for decarbonizing the
energy
sector
,
although its
production requir
es
signicant resour
ces.
Oshor
e
wind,
given the
nominal
power
of
the
turbines,
oers
greater
electricity
generation
potential
but
involves
higher
costs
and
technical
complexities. The
activities during the development,
construction, and operation
phases are identied.
Based
on
a
review
of
environmental
resear
ch
on
oshore
wind
projects
and
green
hydr
ogen
production,
the
main
environmental
impacts
in
each
phase
are
identied.
During
development,
impacts
such
as
increased noise, vibrations, and alterations to the seabed due to geophysical and geotechnical studies
are observed. In construction, dr
edging and the installation of foundations and cables can resuspend
sediments, aect water quality
, and increase noise, impacting marine fauna. During operation, impacts
include bird collisions
and increased underwater
noise. Desalination
of water
may alter the
salinity and
oxygenation of the water but preserves terr
estrial water resources. Other impacts include noise and the
risk of gas leaks. This resear
ch aims to provide a compr
ehensive perspective that can serve as a basis
for decision-making by policymakers, project developers, and other key stakeholders.
P
ALABRAS CLA
VE:
Hidrógeno
V
erde,
Impacto
Ambiental,
Energía
Eólica
Oshore,
Electrólisis,
desalinización, Uruguay
.
KEYWORDS:
Green
Hydrogen,
Environmental
Impact,
Oshore
W
ind
Energy
,
Electrolysis,
Desalina-
tion, Uruguay
.
Resumen
Abstract
1. INTRODUCCIÓN
2. METODOLOGÍA APLICADA
En
los
últimos
años,
el
cambio
climático
y
la
demanda
de
fuentes
de
energía
sostenibles
han
incrementado
el
interés
en
tecnologías
renovables
y
bajas
en
emisiones
de
gases
de
efecto
invernadero
como
la
energía
eólica
oshore
y la
producción
de Hidrógeno (H2)
verde.
Esta
investigación
explora
dichas
tecnologías,
especícamente
en la
Zona
Económica
Exclusiva
(ZEE)
de
Uruguay
para
identicar
sus
posibles
impactos
ambientales.
El
H2
verde,
pr
oducido
mediante
la
electrólisis
del
agua
con
electricidad
de
fuentes
renovables,
es
un
vector
energético
con
bajas
emisiones
y
potencial
para
aplicaciones
industriales,
de
transporte
y
almacenamiento
de
energía.
Ofr
ece
una
forma eciente
de almacenar
energía
e
integrarse
en
infraestructuras
energéticas
existentes.
Por
otro
lado,
la
energía
eólica
oshore,
que
aprovecha
los
vientos
marinos,
es
una
alter
nativa
con
bajas
emisiones
y
ha
avanzado
con
mejoras
en
la
eciencia
de
aerogenerador
es
y
técnicas
de
construcción
y
mantenimiento.
Uruguay
,
con
su
amplia
costa,
buenos
r
ecursos
naturales
y
experiencia en
energías
renovables,
es
Este
estudio
busca
identicar
los
impactos
ambientales
de
pr
oyectos
de
hidrógeno
verde
y
energía
eólica
oshor
e
mediante
una
r
evisión
bibliográca
que
integra
aspectos
técnicos,
ambientales
y
normativos.
La
metodología
se
El
hidrógeno
verde
se
produce
mediante
electrólisis,
un
proceso
que
separa
el
agua
en
hidrógeno
y
oxígeno
utilizando
un
electrolizador
.
Para
garantizar
bajas
emisiones
de
CO2,
y
ser
catalogado
como
“verde”
este
proceso
requier
e
energía
eléctrica
proveniente
de
fuentes
renovables. (Goldman Sachs International, 2022).
La
energía
eólica
oshore
se
reer
e
a
la
generación
de electricidad a partir de aerogenerador
es
un
candidato
ideal
para
implementar
proyectos
de
H2
verde
y
energía
eólica
oshore.
La
investigación
tiene
como
objetivo
principal
identicar
los
impactos
ambientales
de
este
tipo
de
proyectos
oshore
dentro
de
la ZEE
de
Uruguay
.
Se
llevará a
cabo una
revisión bibliográca
detallada sobre
los
conceptos
de
generación
eólica
y
pr
oducción
de
H2
verde,
tecnologías
especícas,
procedimientos
de
operación
y
mantenimiento,
como
también
estudios
de
caracterización
ambiental
de
la
ZEE,
para
posteriormente
realizar
el
análisis
e
identicación
de
los
impactos
potenciales
en
el
medio
físico,
biótico
y
antrópico
que
pueden
ocurrir
en
cada
fase
de
un
proyecto
e
identicar
cuáles
son
los
factores
ambientales
que
pueden
verse
más
afectados.
Estos
resultados
podrían
propor
cionar una visión integral para ser usados
como
base
de
partida
en
análisis
especícos
e
informar
a
r
esponsables
de
políticas
y
desarrollador
es de proyectos.
estructuró en cuatro fases principales: r
evisión
de
conceptos
básicos,
revisión
de
tecnologías,
evaluación
de
estudios
ambientales
previos
e
identicación de impactos clave.
2.1. Conceptos básicos del Hidrógeno V
erde y la Ener
gía Eólica oshore
instalados
en
masas
de
agua,
normalmente
en
océanos
o
grandes
lagos.
A
diferencia
de
la
energía
eólica
terrestr
e,
los
parques
eólicos
oshor
e
se
construyen
en
ár
eas
costeras
o
en
alta
mar
,
es
en
general
una
ventaja
que
la
potencia
nominal
de
los
aerogenerador
es
oshore
es
superior
a
la
onshore. (Letcher
, 2017).
29
Se
realizó
una
revisión
detallada
de
las
tecnologías
utilizadas
en
proyectos
eólicos
oshore
y
de
H2
verde,
evaluando
sus
actividades
durante
las
fases
de
desarrollo,
construcción
y
operación
de
los
proyectos,
considerando
las
siguientes
áreas
clave:
La
etapa
de
desarrollo
de
un
proyecto
eólico
oshore
incluye
todas
las
actividades
previas
al
cierre
nanciero,
lo
que
puede
llevar
hasta
tres
años
(BVG
Associates,
2019).
Un
componente
crítico
es
el
Estudio
de
Impacto
Ambiental,
que
implica
levantamiento
de
líneas
base
y
estudios
especícos
sobre
clima,
ruido,
fauna
marina,
avifauna,
hábitats, navegación,
pesca, y
aspectos
socioeconómicos.
Los
estudios
del
recurso
eólico
y
datos
metoceánicos
evalúan
la
velocidad
del
viento
a
alturas
aproximadas
de
150-250
metros
sobre
el
nivel
del
mar
mediante
torres
meteorológicas,
anemómetros
y
sistemas
r
emotos
como
lidars
a)
Aerogenerador
es
Oshore:
Los
aerogeneradores
oshore
son
más
grandes
y
potentes
que
los
terrestr
es,
alcanzando
capacidades
de
hasta
16
MW
, como el modelo
Goldwind GWH252-16 MW
con
rotores
de
250
metros
de diámetr
o
(TGS
New
Energy
,
2024).
Su
diseño maximiza
la
generación
eléctrica
en
áreas
reducidas,
aprovechando
vientos
constantes
en
alta
mar
.
No
obstante,
el
transporte
e
instalación
de
componentes
voluminosos
y
pesados
plantean
desafíos
logísticos,
que
además
enfrentan
condiciones
extremas
del
entor
no
marino,
como
la
corrosión,
las fuertes corrientes y el oleaje.
b)
Fundaciones:
Las
fundaciones
propor
cionan
estabilidad
estructural
y
se
clasican
en
jas
y
otantes.
Las
jas,
como
los
monopilotes
y
estructuras
tipo
jackets,
son
adecuadas
para
aguas
poco
profundas
(0-80
m).
Las
otantes,
2.2. Análisis de T
ecnologías Asociadas
2.2.1 Etapa de Desarrollo
2.2.2. Análisis de T
ecnologías
y
boyas
metoceanográcas.
Estos
datos
son
esenciales
para
determinar
la
viabilidad
técnica
del
proyecto.
Los
estudios
geofísicos,
geotécnicos
e
hidrológicos emplean
técnicas no invasivas como
sondeos
sísmicos
y
batimetría
para
mapear
el
lecho
marino. T
ambién se
realizan
perforaciones
y
pruebas de penetración
para caracterizar el
suelo
y
planicar
las
rutas
de
cableado
submarino,
asegurando
la
estabilidad
y
viabilidad
de
las
instalaciones (BVG Associates, 2019).
ancladas
mediante
cables
o
tensores,
permiten
proyectos
en aguas
más pr
ofundas, expandiendo
la
viabilidad
de
parques
eólicos
en
diversas
regiones (Fan et al., 2022).
c)
Cableado
Submarino
y
Subestaciones:
El
cableado
de
media
y
alta
tensión
conecta
los
aerogenerador
es
a
subestaciones
oshore
y
a
tierra
rme.
Estas
subestaciones
transforman
la
electricidad
de
media
a
alta
tensión,
mejorando
la
eciencia
del
transporte
energético.
Su
diseño
robusto
debe
r
esistir
la
exposición
a
corrientes
marinas
y
condiciones
adversas
(Rodríguez,
2020).
d) Electrólisis y Almacenamiento:
La electrólisis es
un
proceso
químico
que
utiliza
energía
eléctrica
para
descomponer
agua
en
sus
componentes
básicos, hidrógeno y oxígeno.
La tecnología PEM
30
destaca
en
la
producción
de
H2
verde,
siendo
viable
para
fuentes
renovables
intermitentes
gracias
a
su
exibilidad
y
alta
pur
eza
del
H2.
Sin
embargo,
los
costos
elevados
y
los
desafíos
de
almacenamiento,
como
la
fragilización
de
materiales
y
el
manejo
de
residuos
químicos,
requier
en
soluciones
integradas
para
garantizar
sostenibilidad
y
seguridad
operativa
(Calado
&
Castro, 2023).
e)
Operación
y
mantenimiento:
La
fase
de
operación
y
mantenimiento
(O&M)
de
parques
eólicos
oshore
es esencial
para garantizar
su
eciencia
y
longevidad.
Este
proceso
incluye
mantenimiento
planicado
y
no
planicado.
El
primero
se
realiza
periódicamente,
siguiendo
un
calendario
de
inspecciones
visuales,
revisiones
mecánicas
y
reemplazo
de
componentes
desgastados
para
prevenir
fallos.
El
segundo
abar
ca
reparaciones
emergentes
derivadas
de
daños
por
tormentas,
fallos electrónicos
o mecánicos
inesperados, que
requier
en
una
rápida
movilización
de
equipos
especializados (Thomsen, 2012).
En
proyectos
de
hidrógeno
verde,
el
O&M
incluye la
desalinización de
agua para
electrólisis,
compresión y
almacenamiento
del
hidrógeno,
así
como
la
eliminación
segura
de
residuos
líquidos
y
sólidos
generados
durante
las
operaciones,
asegurando
la
sostenibilidad
del
sistema
(Calado
& Castro, 2023).
Para
avanzar con
la identicación
de los
impactos
ambientales
se
evaluaron
y
listaron
las
actividades
en
cada
etapa
del
proyecto
(desarrollo,
construcción
y
operación)
determinando
los
medios y factores ambientales asociados a cada
actividad.
De
acuer
do
con
Zaror
(2000),
los
factores
ambientales
son
diversos
componentes
del ambiente
susceptibles de ser
modicados por
la acción humana.
La
r
evisión
de
publicaciones
cientícas
identicó
los principales impactos ambientales asociados a
proyectos eólicos oshor
e y de hidrógeno verde:
•
Aves
y
Mamífer
os
Marinos:
Desplazamiento,
colisiones
y
alteración
de
hábitats
debido
a
la
construcción
y
operación,
con
impactos
acumulativos
entre pr
oyectos cercanos.
•
Peces
y
Comunidades
Bentónicas:
Modicación
de
comunidades
por
sustratos
duros
y
arrecifes
articiales,
con
benecios locales, pero riesgos de
perturbaciones.
• Impactos de
la pr
oducción de
Hidrógeno
V
erde:
Impactos
por
demanda
de
agua,
descargas
de
salmuera
y
uso
de
metales
2.3. Revisión de literatura cientíca y resultados de otr
os proyectos similares
2.4. Identicación de Impactos Ambientales
raros,
junto
con
riesgos
de
contaminación
por fugas químicas.
•
Comunidades
Locales:
Afectación
de
la
pesca
artesanal,
conictos
por
el
espacio
marítimo
y
presión
sobre
servicios
por
trabajadores externos.
Estos
hallazgos
establecen
un
marco
para
abordar
impactos
clave
en
futuros
proyectos
en
la ZEE de
Uruguay
.
Los
factores
ambientales que
se evaluarán
dentro
de cada Medio son los siguientes:
•
Factores
evaluados
dentr
o
del
Medio
Físico:
Lecho
Marino
/
Suelo,
niveles
sonoros
ambientales,
calidad
del
agua
supercial, calidad del aire, temperatura del
agua
supercial
e
hidr
oquímica,
presiones
sobre los r
ecursos naturales.
31
•
Factores
evaluados
dentro
del
Medio
Biótico:
Fauna:
Plancton,
Bentos,
Necton,
Peces,
Aves,
Reptiles,
Mamíferos
Marinos,
Cefalópodos;
y
ora
acuática
y
ora
supercial.
•
Factores
evaluados
dentro
del
Medio
Antrópico:
Paisaje,
Pesca,
navegación
y
tráco marítimo y terrestr
e.
A
continuación,
se
identicó
la
relación
de
cada
actividad
del
proyecto
con los
efectos
potenciales
en
el
Medio,
así
como
los
impactos
ambientales
en sus diferentes etapas. La Figura 1. muestra un
Posteriormente,
con
los
resultados
de
las
tablas
obtenidas,
se
analizaron
los
impactos
ambientales
en
función
de
su
grado
de
incidencia,
determinando
cuáles
son
los
que
aparecen
con
mayor
fr
ecuencia
pudiendo
ocasionar
mayor
afectación
en
cada
fase
del
proyecto
y
así
determinar
cuáles
son
los
medios y factores ambientales más afectados.
La
estrategia
de
evaluación
utilizada
integra
aspectos
técnicos
y
ambientales,
identicando
las
actividades
e
impactos
ambientales
más
relevantes
en
cada
fase
del
proyecto.
Este
enfoque
no
solo
facilita la
identicación
de
impactos
clave
en
una
fase
temprana,
sino
que
también
ofr
ece
una
base
inicial
para
la
toma
de
decisiones
en
el
Figura 1.
Sección de la tabla “Actividades que pueden ocurrir en la fase de desarrollo
del proyecto, con sus posibles impactos y factor
es ambientales relevantes”.
Fuente: elaboración propia.
diseño de medidas
de mitigación adaptadas
a las
condiciones
locales,
apoyando
la
sostenibilidad
de
pr
oyectos
en
Uruguay
y
en
contextos
similares.
Estudios
geotécnicos
y geof
ísicos
Alteración de Fa
una
marina
Alteración del lecho
marino
Aumento de los niv
eles
de ruido
Biótico
Biótico
Físico
Vinculación
Los estudios geotécnicos y geof
ísicos pueden ocasiona
r
alteración de fauna marina por pertubaciones durant
e
los momentos de muestro.
Durante la elaboración de los estudios geot
écnicos
puede ocurrir posible remoción del lecho marino en
diferentes áre
as de estudio (Subsea Working G
roup, 2000)
Factor ambiental
Medio
Impacto ambiental
Actividad
ejemplo
de
una
sección
de
las
tablas
utilizadas
para
la
identicación
de
impactos
durante
cada
fase del proyecto.
32
3. RESUL
T
ADOS OBTENIDOS:
Con
base
en
la
información
de
la
caracterización
ambiental
de
la
ZEE,
se
establecieron
criterios
para
delimitar
áreas
factibles
para
proyectos
y
sugerir
un ár
ea viable. Debido
a limitaciones
tecnológicas
de
las
fundaciones
jas,
se
seleccionaron
áreas
hasta pr
ofundidades máximas
de
100 m,
también
se
excluyeron
áreas
protegidas
a
nivel
nacional,
rutas
de
buques
mercantes
y
zonas
pesqueras.
La
Figura
2
ilustra
esta
delimitación.
Un
mayor
detalle en la delimitación
necesitará de un análisis
exhaustivo
de
la
información
tomando
en
cuenta
muchos más elementos del entorno marino.
A
continuación,
se
presentarán
los
principales
impactos
ambientales
identicados
que
pueden
afectar
la
ZEE
de
Uruguay
,
para
cada
fase
del
proyecto.
La
fase
de
desarrollo
involucra
una
serie
de
actividades
que
incluyen
estudios
oceanográcos,
sísmicos,
geofísicos,
geotécnicos
y
la
instalación
de
infraestructuras
como
torres
de
medición
de
viento
y
boyas
(BVG
Associates,
2019).
A
continuación,
3.1.
Identicación
de
los
impactos
ambientales
en
un
proyecto
ubicado
en
la
Zona
Económica
Exclusiva del Uruguay
3.2. Fase de desarrollo
Figura 2.
Delimitación de la Zona factible para proyectos eólicos oshor
e dentro de la ZEE.
Fuente: elaboración propia.
en
la
Figura
3
se
muestran
los
resultados
de
los
principales
impactos
ambientales
asociados
con
estas actividades.
33
Los
impactos
ambientales
más
relevantes
están
relacionados
con
el
medio biótico,
siendo
la
fauna
marina
la
más
afectada.
Los
niveles
de
ruido
generados
por
estudios geofísicos
y
geotécnicos
son
una
preocupación
principal,
ya
que
estos
pueden
alterar
comportamientos,
causar
daños
físicos
y
afectar
la
repr
oducción
y
comunicación
de
diversas
especies.
Estudios
como
los
sísmicos
de
aire
comprimido
y
los
de
alta
resolución
(HRG)
generan
pulsos
sonoros
que
penetran
el
subsuelo,
lo
que
puede
impactar
de
forma
signicativa
a
peces,
mamíferos
marinos,
tortugas
y
cefalópodos
(BOEM,
2018)
que
pueden
estar
presentes en la ZEE de Uruguay
.
El
aumento
del
tráco
marítimo
asociado
a
las
actividades
de
exploración
también
incrementa
el
riesgo
de
colisiones
con
fauna
marina,
particularmente
mamíferos
y
aves,
y
contribuye
al
ruido
submarino,
afectando
patrones
migratorios y de comportamiento de las
especies
(Congressional Resear
ch Service, 2024).
Adicionalmente,
las
actividades
de
instalación,
como
la
colocación
de
bases
para
torres
de
medición
de
vientos,
pueden
generar
remoción
de
sedimentos,
perturbando
los
hábitats
del
fondo
marino
y
afectando
comunidades
de
plancton
y
bentos, lo que puede alterar la red tróca.
Figura 3.
Principales impactos ambientales identicados en la Fase de Desarrollo.
Fuente: elaboración propia.
Especies
como
cefalópodos
pueden
experimentar
daños
en
sus
estatocistos,
esenciales
para
su
equilibrio,
cuando
se
exponen
a
sonidos
de
baja
frecuencia
(50-400
Hz)
y
niveles
de
presión
sonora
de
hasta
175
dB
pico
(Oisín,
Rogério
&
Coca, 2023).
Otros
impactos
identicados
incluyen
la
afectación
de
la
calidad
del
agua
debido
a
derrames
accidentales
de
embarcaciones
o
al
movimiento
de
sedimentos,
y
la
alteración
de
la
calidad
del
aire
por
emisiones
de
los
equipos
y
transporte
marítimo.
Estas
alteraciones
pueden
dañar
ecosistemas
y
disminuir
la
biodiversidad
del
área
de
estudio
(Zhou,
2019).
Finalmente,
aunque
de
menor
frecuencia,
la
alteración
del paisaje
marino,
inuenciada
por
el
tráco
marítimo
y
la
presencia
de
estructuras
temporales,
puede
afectar
la
calidad
del
paisaje,
como
también
la
interacción
de
aves y
mamíferos
marinos
con
sus hábitats.
Es
esencial
considerar
estos
impactos
acumulativos
y
sus
efectos
sinérgicos
durante
esta
etapa
para
garantizar
una
planicación
sostenible,
en
especial
si
se
pretenden
desarrollar
distintos
proyectos
al
mismo tiempo en la ZEE.
34
3.2.1. Medidas de Mitigación
3.2.2. Fase de construcción
Las
medidas de
mitigación
propuestas
se
centran
en
minimizar
los
impactos
en
el
medio
biótico
y
físico
durante
la
etapa
de
desarr
ollo.
Para
proteger el
medio biótico, se sugiere implementar
monitoreo
visual
de
mamíferos
marinos
y
monitoreo
acústico
pasivo
mediante
hidrófonos
para
detectar
fauna
cercana.
Se
recomienda
establecer zonas
de exclusión
acústica alrededor
de
las
embarcaciones
y
utilizar
inicios suaves
(soft
starts)
para
aumentar
gradualmente
la
potencia
de
las
fuentes
acústicas,
permitiendo
que
los
animales
marinos
se
alejen
del
área
antes
de
alcanzar
niveles
de
ruido
altos
(BOEM,
2018).
Además,
se
deben
realizar
pruebas
preliminares
de
calibración
de
equipos
para
minimizar
el
uso
innecesario de potencia y ruido.
La
planicación
temporal
y
espacial
es
clave,
evitando
actividades
durante
las
temporadas
de
desove
y
cría,
así como
minimizando la superposición
de estudios
en
ár
eas
cer
canas
para
permitir
la
r
ecuperación
de
las
poblaciones
marinas.
T
ambién
se
sugier
e
implementar
cierr
es
temporales
y
espaciales
en
hábitats
críticos
y
rutas
migratorias,
especialmente
para
ballenas
y
tortugas.
Es
fundamental
r
ealizar
estudios
de
línea
de
base
con
campañas
de
muestreo
estacionales
para
establecer
r
eferencias
detalladas del
entor
no
marino.
Para
el
medio
físico,
las
medidas
incluyen
la
contención
y
prevención
de
derrames
mediante
barreras
físicas,
planes
de
respuesta
rápida
y
equipos
especializados.
Se
recomienda
reducir
las emisiones atmosféricas
de las embarcaciones
mediante
tecnologías
como
ltr
os
de
partículas
y
catalizadores,
además
de
optimizar
rutas
y
operaciones
para
disminuir
el
tiempo
de
funcionamiento de motores y maquinaria.
En
cuanto
al
medio
antrópico,
se
enfatiza
la
planicación
de
tráco
marítimo
mediante
la
denición
de
rutas
seguras
y
velocidades
máximas
para reducir el riesgo de colisiones con fauna
marina y minimizar el ruido submarino.
Durante
la
fase
de
construcción
los
impactos
ambientales
más
r
elevantes
están
asociados
con
alteraciones
signicativas
en
los
ecosistemas
marinos.
A
continuación,
en
la
Figura
4
se
muestran
los
resultados
de
los
principales
impactos identicados durante esta fase.
Figura 4.
Principales impactos ambientales identicados en la Fase de Construcción.
Fuente: elaboración propia.
35
Entre
los
impactos
más
destacados
se
encuentra
el
aumento
del
ruido
submarino,
generado
principalmente
durante
la
instalación
de
fundaciones
mediante
martillos
hidráulicos
o
percutor
es
vibratorios.
Este
ruido
puede
inducir
comportamientos
de
evitación
en
mamíferos
marinos como
delnes, ballenas
y lobos
marinos,
además
de
causar
daños
físicos
en
tejidos
auditivos
y
otros
órganos
de
peces
y
cefalópodos,
todas
estas
especies
pr
esentes
en
la
ZEE.
La
sensibilidad de
estas especies al sonido,
esencial
para
su
navegación,
búsqueda
de
alimento
y
comunicación,
hace
que
estos
impactos
sean
especialmente
críticos
(T
.
Aran
Mooney
,
2020).
Las
actividades
relacionadas
con
el
pilotaje
también
modican
el
comportamiento
de
especies
marinas
a
grandes
distancias
y
pueden
alterar
patrones
migratorios clave.
La
instalación
de
cables
y
estructuras
submarinas
afecta
considerablemente
a
los
hábitats
bentónicos,
desplazando
sedimentos,
aumentando
la
turbidez
del
agua
y
modicando
la
biodiversidad
local.
Estas
alteraciones
pueden
perjudicar
a
organismos
como
poliquetos,
crustáceos
y
equinodermos,
esenciales
para
las
dinámicas ecológicas
del fondo
marino. Además,
la
turbidez
incrementada
afecta
la
penetración
de
luz,
reduciendo
la
fotosíntesis
del
toplancton
y
alterando
las
cadenas
trócas
marinas
(V
an
Hoey
,
2018).
Según
Köller
(2006),
los
impactos
en fondos arenosos pueden favor
ecer especies
de
fondos
duros,
pero
eliminan hábitats
blandos y
afectan la biodiversidad asociada.
La calidad
del agua enfrenta riesgos signicativos
debido
a
derrames
operativos
o
accidentales
de
combustibles,
liberación
de
sedimentos
y
posibles
contaminantes
provenientes
de
las
actividades
de
construcción.
Estas
alteraciones
hidroquímicas
y
físicas pueden
dañar directamente
a las
especies
acuáticas
y
generar
impactos
a
largo
plazo
en
los
ecosistemas
marinos.
Paralelamente,
las
emisiones
atmosféricas
generadas
por
maquinaria
pesada,
buques
y
equipos
de
soldadura
contribuyen
a
la
contaminación
del
aire,
afectando tanto
a las
comunidades locales
como
a la biodiversidad costera (Thomsen, 2012).
El
incremento
del
tráco
marítimo
y
terrestr
e
durante
la
construcción
añade
complejidad
a
los
impactos.
El
transporte
continuo
de
materiales
y
equipos
aumenta
el
riesgo
de
colisiones
entre
embarcaciones
y
especies
marinas
como
tortugas,
aves
y
mamíferos
marinos.
Estas
colisiones
pueden
causar
lesiones
graves
o
mortales,
y
el
ruido
generado
por
el
tráco
marítimo
afecta
aún
más
a
la
fauna
marina,
especialmente
a
especies
dependientes
del
sonido
(Byr
nes
&
Dunn,
2020).
Las
restricciones
de
navegación
impuestas
para
garantizar
la
seguridad
durante
la
construcción
también
pueden
interferir
con
actividades
económicas
como
la
pesca,
afectando dir
ectamente los
medios de vida
de las
comunidades locales (V
an Hoey
, 2018).
Otro
impacto
relevante
es
la
presión
sobr
e
los
recursos
naturales
debido
al
consumo
intensivo
de
materiales
como
acero,
concreto,
cobre
y
otros
metales
esenciales
para
las
estructuras
y
membranas
de
los
electrolizador
es.
Este
consumo
genera
una
huella
signicativa
de
gases
de
efecto invernadero durante la producción de
estos
materiales,
incrementando
los
impactos
ambientales
del
proyecto
(Condon,
2023).
Además, la generación de residuos, incluyendo
materiales
de
construcción
y
aceites
usados,
plantea
desafíos
en
su
gestión,
destacando
la
necesidad
de
sistemas
adecuados
para
su
r
ecolección,
reciclaje
y
eliminación
segura
(Thomsen, 2012).
Finalmente,
la
congestión
de
servicios
logísticos,
como
los
puertos,
repr
esenta
un
desafío
tanto
técnico
como
ambiental.
La
selección
inadecuada
de
puertos
puede
generar
demoras
signicativas
en
las
operaciones
logísticas
y
conictos
con
las
comunidades
costeras
debido
a
impactos
visuales
y
restricciones
en
el
acceso
a
áreas
públicas
(Thomsen,
2012).
A
pesar
de
estos
desafíos,
la
fase
de
construcción
también
ofrece
oportunidades
de
generación
de
empleo
y
desarrollo
económico
local,
cr
eando
empleos
directos
e
indirectos
en
sectores
como
la
logística,
los
servicios
y
la
construcción,
lo
que
puede contribuir positivamente al
bienestar de las
comunidades cercanas.
36
3.2.3. Medidas de Mitigación
La
mitigación
de
los
impactos
ambientales
durante
la
fase
de
construcción
incluye
un
conjunto
integral
de
medidas.
Para
reducir
el
impacto
del
ruido
submarino,
se
propone
el
uso
de
pingers,
dispositivos acústicos
que emiten señales
fuertes
para
alejar
a
los
mamíferos
marinos
de
las
áreas
de
construcción,
evitando
daños
en
su
sistema
auditivo
y
posibles
lesiones
permanentes.
Además,
las
cortinas
de
burbujas
ofr
ecen
una
barrera
acústica
al
generar
burbujas
con
aire
presurizado,
disminuyendo
la
transmisión
de
ruido
bajo
el
agua,
aunque
su
ecacia
depende
de
las
condiciones del
entorno
marino (Thomsen,
2012,
pág.
288).
Asimismo,
los
sistemas
de
propulsión
a
chorro
son
recomendados
para
embarcaciones,
ya
que
reducen
el
riesgo
de
lesiones
en
tortugas
marinas y
otras especies debido
a la ausencia de
hélices (Byrnes & Dunn, 2020).
Se
deben
implementar
planes
de
contingencia
que
gestionen
posibles
derrames
de
aceites
y
sustancias
contaminantes,
y
se
debe
minimizar
el
uso
de
generadores
eléctricos
temporales
que
utilicen
combustibles
fósiles
(Thomsen,
2012).
T
ambién
es
recomendable
utilizar
materiales
no
contaminantes,
como
cables
libres
de
hidrocarburos,
para
evitar
la
liberación
de
sustancias
tóxicas
al entorno marino,
protegiendo
la
fauna
y
ora
local
(Bastien
et
al.,
2018).
La
planicación
estratégica
de
actividades
puede
prevenir
impactos
acumulativos
al
coordinar
varias
obras
simultáneas
en
una
misma
r
egión
(Thomsen, 2012).
En
relación
con
el
lecho
marino,
se
r
ecomienda
planicar
cuidadosamente las
rutas
de
los cables
submarinos
para
evitar
áreas
ecológicamente
sensibles,
así
como
enterrar
los
cables
a
profundidades
que minimicen
la
exposición de
las
especies
marinas
a
campos
electromagnéticos
y
calor
.
Esto
protege
organismos
como
tibur
ones,
rayas
y
peces
diádromos
presentes
en
la
ZEE,
además
de
reducir
el
riesgo
de
interacción
negativa con la vida marina (Bastien et al., 2018).
Es
fundamental
establecer
r
estricciones
de
navegación
y
zonas
de
seguridad
para
evitar
colisiones
entr
e
embarcaciones
el
proyecto.
Además,
se
debe
prohibir
la
pesca
de
arrastre
en
las
áreas
del
proyecto
para
evitar
accidentes.
La
participación
del
sector
pesquero
en
la
planicación
permite
minimizar
conictos
y
asegurar
un
diseño
que
facilite
la
coexistencia
de
las actividades
pesqueras
y
el proyecto
eólico
(V
an Hoey
, 2018).
La
gestión
de
residuos
es
clave
para
minimizar
la
contaminación.
T
odos
los
desechos
deben
ser
recolectados,
r
eciclados
o
eliminados
siguiendo
regulaciones,
como
el
principio
de
cero
descargas
utilizado
en
aguas
alemanas,
que
obliga
a
retornar
a tierra
todo lo
que no
quede jado
en
las
estructuras oshore (Thomsen, 2012).
Finalmente,
es
esencial
planicar
puertos
con
suciente
capacidad
para
manejar
los
componentes
del
pr
oyecto,
establecer
áreas
de
almacenamiento
amplias,
entre
60,000
y
70,000
m2
para
proyectos
de
aproximadamente
80
aerogenerador
es
(Thomsen,
2012),
y
evitar
la
construcción en áreas sensibles desde el punto
de
vista
turístico
o
ecológico.
La
implementación
de
centros
de
coordinación
de
tráco
garantiza
un
ujo
eciente
de
materiales
y
personal,
minimizando
la
congestión
y
los
accidentes
en
zonas
marítimas
y
terrestres.
Además,
la
gestión
eciente
del
uso
de
combustibles
y
lubricantes,
junto
con
la
documentación
detallada
del
consumo
de
recursos,
contribuye
a
una
operación
más
sostenible
y
a
reducir
la
huella
de
carbono
del
proyecto (Thomsen, 2012).
37
La
fase
de
operación
implica
una
serie
de
actividades
continuas
que
pueden
generar
impactos
ambientales
signicativos
tanto
al
medio
físico
y
biótico
como
al
medio
antrópico.
Entre
los
principales
impactos
identicados
se
encuentra
la
mortalidad
o
lesiones
de
aves
y
especies
marinas
por
colisiones
con
las
palas
de
los
aerogenerador
es
o
con
las
embarcaciones
utilizadas
en
actividades
de
mantenimiento.
Las
aves
migratorias,
en
particular
,
enfrentan
un
riesgo
elevado
debido
a
la
altura
y
extensión
de
las
turbinas,
mientras
que
mamíferos
marinos
y
tortugas
pueden
sufrir
lesiones
graves
al
interactuar
con
las
estructuras
(Exo
et
al.,
2003;
Ibon et al., 2022).
Otro
impacto
importante
es
el
aumento
del
ruido
y
las
vibraciones,
que
afecta
negativamente
a
la
fauna
marina.
Este
ruido
proviene
tanto
de
la
operación
de
los
aerogeneradores
y
los
electr
olizadores
como
de
los
sistemas
de
transmisión
eléctrica
y
compresión,
con
efectos
acumulativos
que
pueden
alterar
los
patrones
de
comportamiento
y
migración
de
la
fauna
marina
(European Industrial Gases Association, 2018).
Los
cables
submarinos
generan
campos
electromagnéticos
y
aumentan
la
temperatura
del
3.3. Fase de Operación
En la
Figura 5
se detallan
los principales
impactos
identicados durante esta fase.
Figura 5.
Principales impactos ambientales identicados en la Fase de Operación.
Fuente: elaboración propia.
agua,
lo
que
puede
afectar
a
especies
sensibles
y
alterar
las
condiciones
térmicas
del
entorno.
Adicionalmente,
en
caso
de
r
oturas,
los
cables
podrían
liberar
sustancias
contaminantes
al
lecho
marino,
afectando
la
calidad
del
agua
y
los
ecosistemas locales (Bastien
et al., 2018).
La
desalinización
del
agua,
necesaria
para
los
sistemas
de
electrólisis
genera
salmuera,
cuya
descarga
puede
alterar
la
salinidad
y
la
oxigenación
del agua,
impactando negativamente
a
los
hábitats
bentónicos
y
la
fauna
marina.
Además,
el
uso
de
productos
químicos
en
estos
procesos
puede
incrementar
la
toxicidad
del
agua
marina (Soliman, 2021).
El
tráco
marítimo
intensicado
para
mantenimiento
incrementa
el
riesgo
de
colisiones
con
fauna
marina
y
puede
interferir
con
rutas
de
migración
y
actividades
pesqueras.
Esto
último
afecta
tanto
a
la pesca industrial
como a la
artesanal, limitando
el
acceso
a
áreas
tradicionales
de
pesca
y
provocando
conictos en el
sector (V
an Hoey
, 2018).
38
En
el
ámbito
terrestr
e,
la
instalación
de
sistemas
de
electrólisis
onshore
puede
impactar
el
paisaje
costero,
transformar
ár
eas
en
zonas
industriales
y
generar
riesgos
de
contaminación
de
acuíferos
debido a posibles fugas de concentrados salinos
y químicos tratados (Gurudeo, 2007).
Entre
los
impactos
positivos
se
incluye
la
creación
de
nuevos
ecosistemas
debido
a
las
estructuras
marinas,
que
pueden
actuar
como
Las
medidas
se
centran
en
reducir
los
efectos
negativos
sobr
e
la
fauna
marina,
las
aves,
los
recursos
naturales
y
el
entor
no
físico.
Para
prevenir
la
mortalidad
de
aves
y
murciélagos
por
colisión, se r
ecomienda la instalación de sistemas
disuasorios
visuales
y
acústicos,
como
pintar
una pala de los aerogenerador
es de negro para
aumentar
su
visibilidad,
lo
que
ha
demostrado
reducir
las
colisiones
hasta
en
un
70%,
y
el
uso
de
señales
acústicas
o
ultrasónicas
para
alejar
especies
vulnerables
(Renewable
Energy
W
ildlife
Institute,
2024).
Además, se
propone
la r
educción
o apagado selectivo de aerogenerador
es en
momentos
críticos
de
alto
riesgo,
utilizando
tecnología
de
radar
e
inteligencia
articial
para
detectar
aves
y
activar
estas
medidas
automáticamente.
Para
minimizar
el
impacto
en
la
fauna
marina,
se
sugiere
el
enterramiento
de
cables
submarinos
para
reducir
la
exposición
a
campos
electromagnéticos,
además
de
usar
cables
trifásicos
AC
o
sistemas
HVDC
bipolares
con
blindajes
adecuados
(Bastien
et al, 2018).
T
ambién
se recomienda implementar
tomas
de
agua
subsuperciales
(depende
de
la
región) en los pr
ocesos de desalinización, lo que
disminuye
el
riesgo
de
atrapamiento
de
organismos
marinos
durante
la
toma
de
agua
(Missimera,
2017).
En
cuanto
a
la
iluminación,
se
sugiere
utilizar
sensores
de
movimiento
y
temporizadores
para
controlar
la
duración
de
la
exposición
lumínica,
minimizando
su
impacto
en
la vida silvestre y los hábitats marinos (Byrnes &
Dunn, 2020).
arrecifes
articiales,
favor
eciendo
la
biodiversidad
local.
Además,
la
generación
de
empleo
en
sectores r
elacionados con la energía renovable
y
el
hidrógeno
verde
constituye
un
benecio
socioeconómico
signicativo
(Congressional
Research Service, 2024).
3.3.1. Medidas de Mitigación
En
el
manejo
de
residuos
líquidos,
se
plantean
sistemas de
tratamiento de
aguas residuales
para
eliminar
impurezas
generadas
en
los
procesos
operativos
y
evitar
la
contaminación
del
agua.
Para
la
gestión
de
salmuera
derivada
de
la
desalinización,
se
proponen
sistemas
de
difusión
diseñados
para
diluir
la
concentración
salina
y
minimizar
sus
efectos
sobre
los
ecosistemas
bentónicos
(Missimera,
2017).
En
cuanto
al
ruido
y
las
vibraciones
generadas
por
los
equipos
de
electrolisis
y
compresores,
se
r
ecomienda
el
aislamiento
acústico
de
los
mismos,
el
uso
de
cabinas
insonorizadas
y
el
mantenimiento
planicado
para
evitar
la
acumulación
de
impactos
en el medio marino (Stocker
, 2023).
Además,
se
sugiere
un
enfoque
de
planicación
estratégica
para
fomentar
la
coexistencia
entre
proyectos
y
actividades
pesqueras,
estableciendo
restricciones
especícas
para
técnicas
de
pesca
de alto
impacto como
el arrastre, pero evaluando
opciones
para
permitir
métodos
de
pesca
pasiva
(V
an
Hoey
,
2018).
Por
último,
se
recomienda
el
diseño adecuado de instalaciones para
el manejo
seguro
de
hidrógeno,
incluyendo
códigos
y
normas
estrictas
que
minimicen
riesgos
de
fugas
e incendios (Chris LaFleur
, 2023).
39
En
Uruguay
,
las
zonas
entre
20
y
100
metros
de
profundidad
dentro
de
la
ZEE
son
técnicamente
viables
para
la
instalación
de
proyectos
eólicos
oshore,
sin embargo,
hay que
delimitar
muy
bien
las áreas para evitar afectar zonas pr
otegidas
o de interés cultural.
En la fase
de desarrollo los impactos ambientales
se
concentran
en
el
medio
biótico.
Las
actividades
preliminar
es,
como
estudios
geofísicos
y
geotécnicos,
generan
ruido
y
alteran
el
lecho
marino,
afectando
a
especies
como
mamíferos
marinos, peces y tortugas. Los equipos utilizados
en
estas
investigaciones
son
invasivos,
y
los
niveles de ruido pueden perturbar los patrones de
comunicación
y
migración
de
ballenas
y
delnes,
así como
interferir en el
comportamiento de otras
especies marinas dentro de la ZEE.
En
la
construcción,
actividades
como
el
dragado
y
la
instalación
de
cables
submarinos
alteran
la
turbidez del
agua y
liberan sedimentos,
afectando
la
calidad
del
hábitat
marino.
El
uso
de
martillos
hidráulicos
para
fundaciones
genera
ruido
y
presión
sonora,
perjudicando
a
mamíferos
marinos,
peces
y
cefalópodos.
Estas
actividades
también
incrementan
el
tráco
marítimo,
aumentando
el
riesgo
de
colisiones
y
afectaciones
a
la
fauna
marina.
En
la
operación,
uno
de
los
impactos
más
relevantes es la mortalidad de aves por
colisiones
con
aerogenerador
es.
Las
vibraciones
y
ruidos
submarinos
también
afectan
a
la
fauna
marina,
alterando
patrones
de
comportamiento,
repr
oducción
y
migración.
Además,
la
desalinización
necesaria
para
la
electrólisis
produce
euentes
de
alta
salinidad
y
residuos
químicos
que alteran
la calidad
del
agua y
pueden
impactar
ecosistemas
locales.
Los
campos
electromagnéticos
generados
por
los
cables
submarinos,
aunque
con
efectos
menores,
también pueden interferir en especies sensibles.
Para
mitigar
estos
impactos,
se
proponen
medidas
que
se
han
utilizado
exitosamente
en
otros
4. CONCLUSIONES Y RECOMENDACIONES
proyectos,
como
el
uso
de
cortinas
de
burbujas
para
reducir
ruido,
enterramiento
de
cables
para
minimizar
campos
electr
omagnéticos,
y
sistemas
de
tratamiento
para
gestionar
adecuadamente
los
euentes
de
desalinización.
Además,
estrategias
como
la
planicación
espacial
y
la
implementación
de
tecnologías
más
ecientes
buscan
reducir
impactos
acumulativos
y
promover
la sostenibilidad del entorno marino.
Los
proyectos
también
pueden
presentar
impactos
positivos.
Las
estructuras
oshore
actúan
como
arrecifes
articiales,
fomentando
la
biodiversidad
al
ofr
ecer
hábitats
a
diversas
especies
marinas.
Este efecto positivo puede generar oportunidades
económicas
adicionales,
como
el
ecoturismo
y
la
investigación
cientíca.
Además,
el
desarrollo
y
operación
de
los
proyectos
oshore
generan
empleo
en
sector
es
como
ingeniería,
logística,
mantenimiento
y
desarrollo
tecnológico,
impulsando
industrias
locales
y cr
eando un
efecto
multiplicador en la economía.
Este
estudio
sugiere
un
enfoque
integral
para
el
desarrollo
sostenible
de
proyectos
de
energía
eólica
oshore
y
producción
de
hidrógeno
verde
en
Uruguay
.
Las
r
ecomendaciones
clave,
partiendo de las lecciones aprendidas en otras
regiones son:
40
En
Uruguay
,
la
falta
de
regulaciones
especícas
para
este
tipo
de
proyectos
resalta
la
necesidad
de
establecer
normativas
claras
desde
las
etapas
iniciales
de
planicación.
Se
recomienda
adoptar
estándares
inter
nacionales
y
aprender
de
la
experiencia
de
países
en
el
sector
,
como
Dinamarca
y
el
Reino
Unido.
Dinamarca,
con
su
planicación
espacial
marina
y
procesos
de
licitación
competitivos,
ha
desarrollado
un
modelo
exitoso
para
el
cr
ecimiento
sostenible
de
la
energía
eólica
oshor
e.
Por
su
parte,
el
Reino
Unido,
mediante
instituciones
como
el
Crown
Estate
y
políticas
como
el
Oshor
e
W
ind
Sector
Deal,
ha
promovido
la
colaboración
público-
privada,
reduciendo
costos
e
incrementando
la
capacidad
instalada
(UK
Gover
nment,
2020).
Estados
Unidos
también
ofrece
un
modelo
basado en la
planicación espacial y subastas de
derechos gestionadas por
el BOEM,
equilibrando
el desarrollo con la pr
otección de otras actividades
marinas (BOEM, 2024).
Para
desarrollar
proyectos
oshor
e
es
fundamental
obtener
diversos
permisos,
incluyendo
concesiones
para
el
uso
del
espacio
marítimo,
autorizaciones
para
generación
de
Se
recomienda
que
Uruguay
inicie
el
desarrollo
de
proyectos
oshore
con
la
implementación
de
una
MSP
con
un
enfoque
estratégico
diseñado
para
r
egular
los
entor
nos
marinos
mediante
la
zonicación
y
la
conciliación
de
diversos
usos
del
mar
.
La
MSP
busca
facilitar
el
desarr
ollo
sostenible de actividades marítimas, minimizando
conictos y acelerando los pr
ocesos de permisos
al involucrar
a múltiples
partes interesadas desde
las etapas iniciales (GWEC & IRENA, 2023).
La
MSP
promueve
la
colaboración
entre
actores
clave,
como
la
industria
energética,
organismos
gubernamentales,
sector
es
de
conservación
y
comunidades
locales,
para
tomar
decisiones
coordinadas
e
informadas.
Organismos
internacionales
como
la
UNESCO,
en
colaboración
con
la
Unión
Europea,
han
desarrollado
guías
de
4.1. Marco Regulatorio Integral:
4.2. Planicación Espacial Marina (MSP
, por su sigla en inglés):
electricidad,
acuer
dos
de
conexión
a
la
red,
permisos
ambientales
y
licencias
relacionadas
con
trabajos
en
tierra
y
operación
de
infraestructura.
La
ausencia
de
un
enfoque
coordinado
en
la
gestión
de
estos
permisos
puede
provocar
retrasos
signicativos,
aumentando
el
riesgo
y
la
complejidad
del
proyecto.
Por
ello,
se
requier
e
un
sistema
eciente,
con
coor
dinación
interinstitucional,
simplicación
de
trámites
y
alineación
con
los
objetivos
nacionales,
para
garantizar
el
avance
sostenible
de
estas
iniciativas.
Una
estrategia
efectiva
para
optimizar
los
procesos
de
permisos
es
la
implementación
de
una
V
entanilla
Única,
que
centraliza
la
gestión
a
través
de
un
único
punto
de
contacto.
Este
modelo,
aplicado
exitosamente
en
Dinamarca
y
Costa
Rica,
mejora
la
transparencia
y
reduce
los
tiempos
de
apr
obación,
permitiendo
una
mejor
coordinación
entre
las
autoridades.
Sin
transferir
competencias legislativas, actúa
como facilitador
,
guiando
a
los
desarrolladores
en
un
marco
regulatorio
claro
y
eciente
(GWEC
&
IRENA,
2023).
refer
encia
para
su
implementación,
incluyendo
estándares
globales
como
el
documento
de
2009
sobre
gestión
basada
en
ecosistemas
y
la
Guía
Inter
nacional
de
2021
para
la
Planicación
Espacial Marina (GWEC & IRENA, 2023).
Para
Uruguay
,
se
recomienda
incluir
consultas
públicas
desde
las
etapas
iniciales
de
planicación
para
garantizar
transparencia
y
consenso,
especialmente
con
sectores
como
el
pesquero.
T
ambién
se
sugiere
evaluar
impactos
acumulativos
y
desarrollar
medidas
especícas
para
mitigar
efectos
temporales
como
ruido,
vibraciones
y
alteraciones
en
la
calidad
del
agua
y
el
air
e,
promoviendo un desarrollo marítimo equilibrado y
sostenible.
41
4.3. Promoción de Investigaciones y Estudios:
4.4. Formación y Capacitación:
Es
crucial
desarrollar
líneas
de
base
ambientales
detalladas para
evaluar los
impactos en
la ZEE
de
Uruguay
.
Se
recomienda
exigir
estudios
de
línea
de
base
a
los
desarrollador
es
y
construir
bases
de
Uruguay
debe
priorizar
pr
ogramas
de
formación
en
tecnologías
de
energía
eólica
oshore
e
hidrógeno
verde
para
los
equipos
e
instituciones
que
estarán
evaluando
estos
proyectos,
fortaleciendo
competencias
digitales
y
técnicas
en
la
fuerza
laboral.
Soluciones
tecnológicas
como
las desarr
olladas por WindEurope y
Amazon Web
datos
digitales consultables
para mejorar
la
toma
de decisiones y la planicación futura.
Services
pueden
optimizar
la
gestión
de
permisos,
mejorando
la
eciencia
y
transparencia
en
los
procesos r
egulatorios (GWEC & IRENA, 2023).
42
7. REFERENCIAS
ANCAP
. (2014).
Programa oceanográco
de caracterización
del margen
continental uruguayo.
Zona Económica
Exclusiva. Montevideo: Zona Editorial.
ANCAP
.
(2016).
Campaña
Oceanográca
para
la
Elaboración
de
un
Estudio
de
Base
Ambiental
Regional
de
la
ZEE de Uruguay
. Montevideo: Advisian.
Bastien, T
., Juan, B., Andr
ew
, W
., Gérard, T
., Morgane, L., Nicolas, D., & Antoine,
C. (2018). A r
eview of potential
impacts of submarine power
cables on the marine environment: Knowledge gaps, recommendations, and future
directions. Renewable and Sustainable Energy Reviews, Elsevier Ltd.
Bureau
of
Ocean
Energy
Management.
(BOEM).
(2018).
Geological
and
Geophysical
(G&G)
Surveys.
U.S.
Department of the Interior
.
BVG Associates. (2019). Guide to an oshore wind farm. BVG Associates Limited.
Byrnes, T
.,
& Dunn,
R. (2020).
Boating- and
Shipping-Related Envir
onmental Impacts
and Ex-ample
Management
Measures: A Review
. Jour
nal of Marine Science and Engineering. https://doi.org/10.3390/jmse8110908
Congressional
Resear
ch
Service.
(2024).
Potential
Impacts
of
Oshore
Wind
on
the
Marine
Ecosystem
and
Associated Species: Background and Issues for Congr
ess. https://crsreports.congress.gov
Chris LaFleur
, E. H.
(2023). Chapter 16
- Safety
of hydr
ogen for large-scale
energy deployment
in a
decarbonized
economy
. En Academic Press. https://doi.org/10.1016/B978-0-323-99514-6.00011-X
Condon,
S.
K.
(2023).
Environmental
aspects
of
oshore
H2
production
from
oshore
wind
farms.
T
rondheim:
Department of Energy and Process Engineering at the Norwegian University of Science.
European Industrial Gases Association. (2018). Envir
onmental impacts of hydrogen plants. Bruselas: EIGA.
Exo,
K.-M., Huppop,
O., &
Garthe,
S.
(2003). Bir
ds and
oshore
wind farms:
a
hot topic
in marine
ecology
.
W
ader
Study Group Bull, Germany
.
Global
W
ind
Energy
Council
[GWEC].
(2022).
Global
oshore
wind
report
2022.
Global
W
ind
Energy
Council.
Obtenido de: https://gwec.net/wp- content/uploads/2022/06/GWEC-Global-Oshore-Wind-Report-2022.pdf
Global
Wind
Energy
Council
[GWEC]
&
International
Renewable
Energy
Agency
[IRENA].
(2023).
Enabling
frameworks for
oshore wind
scale up:
Innovations in
permitting. IRENA.
Obtenido de:
https://www
.irena.org/- /
media/Files/IRENA/Agency/Publication/2023/Sep/IRENA_GWEC_Enabling_frameworks_oshore_wind_2023.
pdf
Goldman
Sachs
International.
(2022).
Carbonomics.
The
clean
hydrogen
revolution.
New
Y
ork:
The
Goldman
Sachs Group, Inc.
Gurudeo Anand T
ularama,
M. I. (2007). Environmental concerns
of desalinating seawater using reverse osmosis.
Australia: The Royal Society of Chemistry
.
Ibon,
G.,
Iratxe,
M.,
Joxe
Mikel,
G.,
&
al.
(2022).
Reviewing
the
ecological
impacts
of
oshore
wind
farms.
npj:
Ocean Sustainability
.
43
Köller
,
J.
(2006).
Oshore
W
ind
Energy
.
Research
on
Environmental
Impacts.
Berlin:
Institute
of
Landscape
Architectur
e
and
Environmental
Planning,
Department
for
Landscape
Planning,
and
Environmental
Impact
Assessment, Berlin University of T
echnology
.
Letcher
, T
.
M. (2017). W
ind Energy Engineering. A
Handbook for Onshore and Oshore Wind
T
urbines. Londres:
Academic Press.
Missimera,
T
.
M.,
&
Gilron,
R.
(2017).
Environmental
issues
in
seawater r
everse
osmosis
desali-nation: Intakes
and
outfalls. Elsevier B.V
. https://doi.org/10.1016/j.desal.2017.07.012
Oisín, D.,
Rogério, C., &
Coca, I.
(2023). Impact
of geophysical and
geotechnical site
investigation surveys on
sh
and shellsh. Wind Energy Ireland (WEI): Blue W
ise Marine.
Renewable
Energy
W
ildlife
Institute.
(2024).
Guide
to
wind
energy
&
wildlife.
Chapter
4:
Minimizing
collision
risk
to
wildlife during
operations. Obtenido
de https://rewi.org/guide/chapters/04-minimizing-collision-risk-to-wildlife-
during-operations/minimization-deterrence/
Rodríguez,
O.
(2020).
Caracterización
y
estudio
de
parques
eólicos
oshore.
Universidad
Politécnica
de
Catalunya.
Soliman,
M.
N.,
&
Zribi,
F
.
(2021).
Energy
consumption
and
environmental
impact
assessment
of
desalination
plants and brine disposal strategies. Institution of Chemical Engineers, Elsevier B.V
.
Stocker
,
M.
(2023).
Potential
biological
impacts
of
very
low
frequency
acoustical
energy
pro-duced
by
oshore
wind
turbine
energy generation.
The
Journal of
the
Acoustical Society
of
America.
https://doi.org/10.1121/10.0018602
T
.
Aran
Mooney
,
M.
H.
(2020).
Acoustic
impacts
of
oshore
wind
energy
on
shery
resour
ces.
Oceanography:
The
Ocial Magazine of. https://doi.org/10.5670/oceanog.2020.408
TGS New Energy
. (2024). TGS New Energy
. Obtenido de 4C Oshore: https://www
.4coshor
e.com/
Thomsen,
K.
(2012).
Oshore
wind:
A
comprehensive
guide
to
successful
oshore
wind
farm
installation.
T
ranbjerg:
Academic Press.
UK
Government
(2020).
Oshore
wind
sector
deal.
Department
for
Business,
Energy
&
Indus-trial
Strategy
.
Obtenido de: https://www
.gov
.uk/government/publications/oshore-wind-sector
-deal/oshore-wind-sector
-deal
V
an Hoey
, G.
B. (2018). Overview
of the
eects
of oshor
e wind farms
on sheries
and
aquaculture.
Luxemburgo:
Publications Oce of the European Union.
Zaror
,
C.
(2000).
Introducción
a
la
Ingeniería
Ambiental
para
la
Industria
de
Procesos.
Concepción:
Universidad
de Concepción.
Zhou,
Z.
L.
(2019).
Eects
of
diesel
oil
spill
on
macrobenthic
assemblages
at
the
intertidal
zone:
A
mesocosm
experiment in situ. Marine Environmental Resear
ch. https://doi.org/10.1016/j.marenvres.2019.104823
45
Garantias nanceiras: evoluções
r
egulatórias para assegurar o efetivo
descomissionamento das instalações
de pr
odução de petróleo e gás natural
no Brasil
1.- Instituto de Energia e Ambiente, Universidade de São Paulo, SP
, Brasil mmeneses@usp.br
2.- Instituto de Energia e Ambiente, Universidade de São Paulo, SP
, Brasil vparente@iee.usp.br
Marcelo Vítor Martins de Meneses
1
, Virginia Parente
2
Recibido: 25/10/2024 y Aceptado: 04/2/2025
46
47
Diante
do
cenário
de
incertezas
quanto
ao
futuro
da
indústria
do
petróleo
e
da
possibilidade
de
responsabilização
internacional
em
caso
de
poluição
oceânica,
países
pr
odutores
de
petróleo,
dentre ele
o
Brasil,
têm promovido
a atualização
dos
seus
normativos sobre
descomissionamento de
plataformas oshore. Assim, por meio de r
evisão dos principais normativos inter
nacionais e brasileiros
relacionados
ao
descomissionamento
oshore,
este
artigo
busca
analisar
o
arcabouço
regulatório
brasileiro sobr
e a
temática. Adicionalmente, são
discutidas as principais questões
a serem abordadas
no processo
de revisão
da regulação de
garantia nanceira para mitigar o risco de
o contribuinte ar
car
com
o
custo
das
operações
de
descomissionamento.
Os
resultados
da
análise
indicaram
haver
falta
de transparência na disponibilização de informações à sociedade sobr
e as atividades de exploração e
produção
de
petróleo.
Além
disso,
constatou-se
a
necessidade
de
aumentar
a
participação
do
sistema
nanceiro
no
provimento
de
garantias para
o
descomissionamento.
Por
m, vericou-se
a
necessidade
de
o
órgão
regulador
estabelecer
parâmetros
clar
os
para
a
denição
de
estimativas
de
custo
do
descomissionamento.
As
melhorias
propostas
neste
artigo
pretendem
contribuir
para
que
países
como
o
Brasil
avancem
em direção
a
uma
transição energética
justa,
na
qual
os
custos
da transição
sejam
adequadamente suportados pelos seus respectivos r
esponsáveis.
In
the
face
of
uncertainty
r
egarding
the
future
of
the
oil
industry
and
the
possibility
of
international
liability
in
the
event
of
ocean
pollution,
oil-producing
countries,
including
Brazil,
have
been
updating
their
regulations
on
the
decommissioning
of
oshore
platforms.
Thus,
by
reviewing
the
main
inter
national
and Brazilian
regulations r
elated to
oshore decommissioning,
this article seeks
to analyze
the Brazilian
regulatory
framework
on
the
subject.
Additionally
,
the
main
issues
to
be
addressed
in
the
process
of
reviewing
the
nancial
guarantee
regulation
to
mitigate
the
risk
of
the
taxpayer
bearing
the
cost
of
decommissioning
operations
are
discussed. The
results of
the analysis
indicated a
lack of
transparency
in
the
provision
of
information
to
society
about
oil
exploration
and
production
activities.
In
addition,
it
was
found
that
there
is
a
need
to
increase
the
participation
of
the
nancial
system
in
the
provision
of
guarantees for decommissioning. Finally
, it was found that the regulatory
body needs to establish clear
parameters
for
dening
decommissioning
cost
estimates.
The
improvements
proposed
in
this
article
aim
to
help countries
like
Brazil
move
towar
ds
a
fair
energy transition
in
which
the
transition
costs are
adequately borne by those responsible for them.
Palavras-chave:
descomissionamento
de
plataformas,
garantias
nanceiras,
indústria
de
petróleo
e
gás natural, transição energética, regulação.
KEYWORDS:
platform
decommissioning,
nancial
guarantees,
oil
and
natural
gas
industry
,
energy
transition, regulation.
Resumo
Abstract
48
1. INTRODUÇÃO
De
acor
do
com
r
elatórios
setoriais
publicados
no
início
da
década
de
2020,
o
mundo
possui
mais
de
7.500
instalações
oshore
destinadas
à
produção
de
petróleo
e
gás
natural,
distribuídas
entre
mais
de
50
países
(Loia
et
al.,
2022).
Grande
parte
dessas
estruturas,
entretanto,
estão
alcançando
a
fase
nal
de
seu
ciclo
de
vida,
sendo
estimado
que
aproximadamente
3.000
plataformas
serão
descomissionadas
entre
os
anos
de
2021
e
2030,
ao
custo
total
de
100
bilhões
de
dólares
(Lockman
et
al.,
2023).
Estima-se
que
o
Brasil
se
tor
nará
um
dos
principais
países
em
termos
de
volume
de
investimento
em
descomissionamento,
com
um
total
de
investimentos
pós-2025
que
deve
exceder
180
bilhões
de
reais.
Essas
estimativas
superam
as
previsões
de
investimentos
para
o
Reino
Unido
(119
bilhões
de
reais)
e
para
os
Estados
Unidos,
de 55,25
bilhões de
reais,
para o
mesmo período (FGV Energia, 2021).
Não
obstante
a
fase
descomissionamento
ainda
não
ter
sido
experimentada
por
muitos
países
produtor
es
de
petróleo,
uma
vez
que
tais
atividades
são
normalmente
executadas
em
campos
maduros,
não
se
pode
dizer
que
essa
é
uma
etapa
totalmente
desconhecida
pela
indústria.
Como
todo
recurso
mineral
esgotável,
ainda
durante
a
elaboração
dos
planos
de
desenvolvimento,
é
possível
estimar
quando
os
custos
de
produção
tornarão
maiores
que
a
receita
advinda
da
produção
e,
consequentemente,
quando
um
projeto
será
descomissionado
(Kaiser
,
2019).
Em
razão
disso,
as
plataformas
oshore
de
petróleo
são
projetadas
para
ter
uma
vida
útil
equivalente
ao
período
de
produção
esperado
do
campo
onde serão instaladas (FGV Energia, 2022).
Ocorre
que,
em
adição
aos
fator
es
técnicos
que
inevitavelmente
conduzem
ao
descomissionamento,
a
cr
escente
exigência
de
descarbonização
da
economia
poderá
acarretar
o
encerramento
das
atividades
de
produção
de
petróleo
muito
antes
do
planejado
(Lockman
et
al.,
2023).
Ambientalistas
e
pesquisadores
têm
armado
que,
para
alcançar
as
metas
estabelecidas
pelo
Acor
do
de
Paris
e
limitar
o
aumento
da
temperatura
global
a
1,5°C
acima
dos
níveis
pré-industriais,
é
necessário
impor
restrições
à
pr
odução
de
combustíveis
fósseis.
Assim,
sugerem
que
os
países
produtores
de
petróleo
sejam
obrigados
a
renunciar
à
exploração
de
até
60%
de
suas
reservas
(Welsby
et
al.,
2021).
Outras
medidas
mais
concr
etas,
entretanto,
já
estão
sendo
adotadas
por
países
industrializados,
a
exemplo
da
proibição
da
venda
de
carros
com
motor
de
combustão
interna,
o
que
permite
projetar
uma r
edução drástica
na demanda
futura
de combustíveis fósseis (Panetta, 2022).
Nesse
cenário
de
incertezas
quanto
ao
futuro
da
indústria
do
petróleo,
portanto,
a
preocupação
quanto
à
capacidade
das
petrolíferas
honrarem
com
seus
compromissos
de
m
de
vida
contratual
passou
a
ser
um
tema
recorr
ente
nas
agendas gover
namentais. T
al apreensão decorre,
principalmente,
do
fato
de
grande
parte
dos
países
produtor
es
de
petróleo
ser
em
signatários
de
tratados
internacionais
que
os
obrigam
a
não
causar
poluição
oceânica.
Assim,
nos
termos
desses tratados,
caso as
companhias petr
olíferas
não
detenham
recursos
nanceiros
para
desativar
as
instalações
de
produção,
os
países
que
as
autorizaram
poderão
ser
condenados
a
assumir
os
elevados
custos
das
atividades
de
descomissionamento (Paterson, 2010).
Para
mitigar
esse
risco
nanceiro,
então,
países
produtor
es
passaram
a
buscar
medidas
mais
efetivas
para
evitar
que
o
custo
do
descomissionamento
venha
a
ser
suportado
por
seus
cidadãos
pagadores
de
impostos,
um
problema
conhecido
no
mundo
econômico
como
externalidades
(Der
nbach,
1998;
Mackie
&
Fogleman,
2016).
Dentre
as
principais
medidas
para
garantir
a
internalização
dessas
externalidades
referentes
às
atividades
de
descomissionamento,
a
exigência da
contratação
de
garantias
nanceiras
para
assegurar
o
descomissionamento
das
instalações
de
produção tem
se
mostrado
uma
ferramenta
com
potencial
para
evitar
que
danos
socioeconômicos
e
ambientais
se
materializem
(Parente
et
al.,
2006).
Essa
foi
exatamente a
opção adotada
pela
Brasil,
que
recentemente
promoveu
atualizações
49
em
seu
arcabouço
regulatório,
de
modo
a
tor
nar
mais
rígidas
e
claras
as
obrigações
relacionadas
às
atividades
de
descomissionamento
a
serem
executadas
ao
m
do
contrato
(Braga
&
Pinto,
2022).
T
endo
sido
superada,
então,
a
etapa
inicial
de
atualização
normativa,
a
Agência
Nacional
do
Petróleo,
Gás
Natural
e
Biocombustíveis
(ANP)
realizou
em
2023
o
primeir
o
ciclo
completo
de
cobrança
de
garantias
nanceiras,
o
que
torna
possível
analisar
o
processo
para
identicar
oportunidades
de
aprimoramento
dessa
política
pública.
Assim,
com
o
objetivo
de
situar
a
atualização
da
regulamentação
brasileira
dentro
de
um esforço global de
construção de mecanismos
para
proteger
os
cidadãos
de
países
produtor
es
de
petróleo
quanto
ao
risco
nanceiro
associado
às
atividades
de
descomissionamento,
este
artigo,
por
meio
de
uma
revisão
histórica,
busca
apresentar os principais tratados internacionais
relacionados ao descomissionamento oshor
e.
Adicionalmente,
analisando
as
informações
publicadas
pela
ANP
sobre
o
descomissionamento,
serão
feitos
apontamentos
iniciais
sobre
oportunidades
de
evolução
do
atual
arcabouço
regulatório,
visando
permitir
que
as
garantias
nanceiras
cumpram
efetivamente
sua
função.
O
diagnóstico
alcançado
indica
que
o
órgão
regulador
deve
ampliar
a
transparência
das
informações
prestadas
à
sociedade
sobre
as
atividades
de
descomissionamento,
além
de
estabelecer
parâmetros
clar
os
que
permitam
a
elaboração
de
estimativas
conáveis
do
custo
dessas
atividades.
Além
disso,
foi
constatada
a
necessidade
de
aumentar
a
participação
do
sistema
nanceir
o
no
provimento
dos
recursos
que
garantam
a
execução
do
descomissionamento,
reduzindo as possibilidades de autogarantias.
Além
desta
breve
introdução,
o
presente
artigo
contempla mais
cinco seções. Na
seção dois
são
apresentados
os
principais
tratados
e
convenções
internacionais
r
elacionados
à
temática
do
descomissionamento
oshore.
A
seção
três
é
dedicada
a
analisar
a
inuência
das
normativas
internacionais
sobre
a
construção
do
arcabouço
legal
e
r
egulatório
brasileiro.
Por
sua
vez,
na
seção
quatro
é
realizada
uma
breve
análise
do
primeiro
ciclo
de
apresentação
de
garantias,
que
se iniciou
em 2023.
Em seguida,
na seção
cinco,
são
debatidos os
principais
aspectos que
devem
ser
considerados
para
aumentar
a
efetividade
da
política
pública
em
análise.
Finalmente,
as
considerações
nais
apresentam
os
principais
pontos
discutidos
neste
artigo,
com
destaque
para
a
indicação
dos
caminhos
que
a
regulação
brasileira
deverá
seguir
para
assegurar
uma
transição energética justa no país.
50
2. EVOLUÇÃO DOS TRA
T
ADOS E CONVENÇÕES
INTERNACIONAIS DE DESCOMISSIONAMENTO
Buscando
proteger
o
meio
ambiente,
as
r
otas
oceânicas
para
navegação,
as
atividades
comerciais
como
a
pesca
e
os
outros
usos
das
águas
marítimas,
os
tratados
e
convenções
internacionais
que
gover
nam
importantes
aspectos
da
indústria
oshore
de
petróleo
evoluíram
consideravelmente
no
último
século
(Fam
et
al.,
2018).
Dentre
os
tratados
inter
nacionais
elaborados
nos
últimos
60
anos
relacionados
à
temática
do
descomissionamento
oshore,
três
normativos
merecem
uma
apreciação
mais
detalhada:
a
Convenção
sobre
a
Plataforma
Continental,
a
Convenção
das
Nações
Unidas
sobre
o
Direito
do
Mar
e
as
Diretrizes
emitidas
pela
Organização
Marítima
Internacional
(Martin,
2003).
2.1. A Convenção sobre a Plataforma Continental - Convenção de Genebra (1958)
A
Convenção
sobr
e
a
Plataforma
Continental,
também
conhecida
como
Convenção
de
Genebra,
foi
o
primeir
o
tratado
internacional
relacionado
ao
abandonamento
ou
desuso
de
instalações
marítimas.
Essa
convenção
estabeleceu
a
noção
e
os
limites
da plataforma
continental e
os
direitos
e
deveres
do Estado
costeiro
relativos
à exploração
de
recursos
naturais
em
uma
área
além
do
mar
territorial (Anderson et al., 2020).
Os
principais
objetivos
deste
normativo
foram
a
proteção
das
r
otas
marítimas
essenciais
à
navegação
inter
nacional
e
à
atividade
pesqueira,
bem
como
a
conservação
dos recursos
vivos
do
mar
e
a
defesa
da
investigação
cientíca.
Nesse
sentido,
a
convenção
determinava
que
o
Estado
costeiro
deveria
manter
a
segurança
em
torno
das
instalações
da
plataforma continental
necessárias
para explorar os r
ecursos naturais com o objetivo
de
proteger
as
rotas
marítimas.
Adicionalmente,
qualquer
instalação
abandonada
ou
fora
de
uso
localizada
na
plataforma
continental
deveria
ser
totalmente
removida
(Inter
national
Law
Commission, 1958).
Cabe
mencionar
,
entr
etanto,
que
as
atividades
de
produção
de
petróleo
oshor
e
ainda
eram
muito
incipientes
quando
da
elaboração
deste
normativo,
sendo
connadas
quase
que
exclusivamente
a
águas
rasas
(Hammerson
&
Antonas,
2016).
Nesse
sentido,
a
total
remoção
das
instalações
abandonadas
ou
fora
de
uso
era
uma
determinação
plausível
de
ser
seguida.
Entretanto,
com
a
instalação
de
plataformas
em
águas
profundas,
tor
nou-se
claro
que
o
cumprimento
do
dispositivo
poderia
não
mais
ser
factível.
Por
esse
motivo,
os
países
mais
avançados
na tecnologia
de
produção em
águas
profundas
passaram
a
propor
uma
interpretação
alternativa
para
a
convenção,
na
qual
apenas
as
instalações
que
pudessem
causar
alguma
interferência
injusticável
na
navegação,
pesca
ou
conservação
dos
recursos vivos
deveriam
ser
removidas (Paterson, 2010).
51
2.2. A Convenção das Nações Unidas sobre o Dir
eito do Mar (1982)
2.3.
As
Diretrizes
e Normas
da Or
ganização Marítima
Internacional (OMI)
para a
Remoção de
Instalações
e
Estruturas Oshor
e na
Plataforma Continental
e na
Zona
Econômica
Exclusiva
Considerando que
a indústria do
petróleo evoluiu
desde
a
Convenção
de
Genebra,
os
países
produtor
es de petróleo
membros da
Organização
das
Nações
Unidas
(ONU)
procuraram
estabelecer
um
normativo
menos
rígido
em
relação
ao
descomissionamento.
Desse
esforço,
emergiu
a
Convenção
das
Nações
Unidas
sobre
o
Direito
do
Mar
de
1982,
que
estabeleceu
uma
nova
ordem
jurídica
para
os
mares
e
oceanos,
tendo
como
principais
objetivos
pr
omover
a
comunicação
internacional,
manter
o
uso
pacíco
do
oceano,
o
uso
eciente
e
a
conservação
dos
r
ecursos
naturais,
bem
como
a
proteção
do
ambiente
marinho
(United
Nations
General
Assembly
,
1982).
No
que
diz
r
espeito
ao
descomissionamento,
essa
convenção
era nitidamente
mais
permissiva
do
que
a
Convenção
de
Genebra,
uma
vez
que
permitia a r
emoção apenas par
cial de instalações
oshore
fora
de
uso.
Nos
termos
dessa
nova
convenção,
qualquer
instalação
ou
estrutura
fora
de
uso
deveria
ser
removida.
Contudo,
no
caso de instalações ou estruturas não
totalmente
removidas,
a
sua
posição,
pr
ofundidade
Diferentemente
das
convenções
apresentadas
anteriormente,
as
diretrizes
da
Organização
Marítima
Internacional
não
são
vinculativas,
sendo
apenas
um
guia
que
apresenta
recomendações
aos
países
membros
da
OMI
sobre
um
assunto
especíco
relacionado
ao
transporte
marítimo
(Braga
&
Pinto,
2022).
Entretanto,
para
aqueles
países
que
promulgaram
a
Convenção
das
Nações
Unidas
sobre
o
Direito
do
Mar
de
1982,
visto
que
tal
r
egulamento
menciona
que
devem
ser
observadas
as
normas
publicadas
por
uma
organização
inter
nacional
competente,
as
diretrizes
da
OMI
tor
naram-se
de
natur
eza
vinculativa (Fam et al., 2018).
Assim,
as
diretrizes
produzidas
por
esta
organização,
e
aprovadas
na
Assembleia
da
OMI
em 1989,
estabeleceram
que as
instalações
e
dimensões
deveriam
ser
devidamente
publicadas
(Martin,
2003).
Assim,
embora
não
seja
explicitamente
armado
que
as
instalações
oshore
pudessem
ser
parcialmente
r
emovidas,
o
documento
aprovado
abre
espaço
para
esta
interpretação (Fam et al., 2018).
Outra
importante
mudança
inserida
no
texto
dessa
convenção
é
a
indicação
de
que
a
remoção
de
instalações
e
estruturas
oshore
abandonadas
deveria
ser
conduzida
de
acordo
com
padrões
inter
nacionais
de
aceitação
geral
relativos
ao
desmantelamento
publicados
por
uma
organização
inter
nacional
competente.
Assim,
mais
uma
vez
por
meio
de
um
esforço
de
interpretação
textual,
à
Organização
Marítima
Internacional
(OMI)
foi
concedida
a
autoridade
de
desenvolver
novos
padrões
e
diretrizes
de
descomissionamento
em
harmonia
com
o
estágio
de
desenvolvimento
da
indústria
oshore
de
petróleo (Anderson et al., 2020).
ou estruturas abandonadas ou fora de uso
localizadas
na
plataforma
continental
ou
na
zona
econômica
exclusiva
deveriam
ser
removidas,
a
menos
que
a
sua
não
remoção
ou
remoção
parcial
fosse coer
ente com
os
padrões estipulados
pelas
diretrizes
da
OMI.
Essas
diretrizes,
por
sua
vez,
estabelecem
que
a
decisão
de
permitir
que
uma
instalação,
estrutura
ou
partes dela
permaneçam
no
fundo
do mar
deve
basear
-se
numa
avaliação
caso
a
caso
pelo
Estado
costeiro
com
jurisdição
sobre
a
instalação
ou
estrutura.
Dentre
os
assuntos
que
devem
ser
considerados
na
análise
de
cada
caso,
destacam-se
“os
custos,
a
viabilidade
técnica
e
os
riscos
de
lesões
ao
pessoal
associados
à
remoção
da
instalação
ou
estrutura”
(Inter
national
Maritime
Organization,
1989, p. 2).
52
3. A RECEPÇÃO DAS CONVENÇÕES INTERNACIONAIS PELO
ORDENAMENTO JURÍDICO E REGULA
TÓRIO BRASILEIRO
A
Convenção
das
Nações
Unidas
sobre
o
Direito
do
Mar
,
celebrada
em
1982,
recebeu
a
assinatura de 159 Estados-membros, dentre eles
o
Brasil.
Entretanto,
antes
de
ser
r
ecebida
pelo
ordenamento
jurídico
brasileiro,
foi
necessário
a
adequação
do
dir
eito
interno
ao
tratado,
o
que
ocorreu apenas
com
a
Lei
8.617,
de
4 de
janeiro
de
1993, que
estabeleceu o
regramento brasileir
o
sobre
o
mar
territorial
e
a
zona
econômica
exclusiva.
Finalmente,
por
meio
do
Decreto
1.530,
de
22
de
junho
de
1995,
foi
declarada
a
entrada
em
vigor
da
Convenção
no
Brasil,
a
partir
de
16
de novembro de 1994 (Fiorati, 1997).
Assim,
a
partir
dessa
data,
perante
o
direito
internacional,
o
Brasil
passou
a
ser
passível
de
responsabilização
no
caso
de
descumprimento
das
normas
refer
entes
ao
abandonamento
ou
desuso
de
instalações
marítimas,
incluindo
as
de
produção
de
petróleo.
Por
esse
motivo,
desde
os
primeir
os
contratos
de
exploração
e
produção
rmados
entre
a
Agência
Nacional
do
Petróleo,
Gás
Natural
e
Biocombustíveis
(ANP)
e
as
empr
esas
petrolíferas,
existe
a
determinação
explícita
de
que
as
empresas
contratadas
são
obrigadas
a
executar
as
atividades
de
desativação
e abandono.
Por
evolução
r
egulatória,
esse
conjunto
de
atividades
passou
a
ser
denominado
descomissionamento,
e
consiste
nas
atividades
associadas
à
interrupção
denitiva
da
operação
das
instalações,
ao
abandono
permanente
e
arrasamento
dos
poços,
além
da
correta
destinação
dos materiais
retirados. Adicionalmente,
é na
fase
de
descomissionamento
que
devem
ser
realizadas
as
ações
necessárias
para
a
recuperação
ambiental
da
ár
ea
de
produção,
bem
como
tomadas
as
medidas
para
a
garantir as
condições
de
segurança
para
a
navegação
marítima
(Braga
& Pinto, 2022).
Entretanto,
as
atividades
de
descomissionamento
são
normalmente
realizadas
ao
nal
do
contrato,
isto
é,
após
o
m
da
vida
útil
produtiva
de
um
campo.
Assim,
caso
determinada
petr
olífera
não
tenha
reservado
os
recursos
nanceiros
necessários
para
executar
as
complexas
e
dispendiosas
atividades
de
descomissionamento,
e
venha
a
se
tornar
insolvente, o gover
no do
Brasil (e em
última
instância,
o
pagador
de
impostos)
pode
ser
obrigado
a
custear
as
ações
de
descomissionamento
em
decorrência
da
Convenção
das
Nações
Unidas
sobre
o Dir
eito do Mar
.
Desta
forma,
para
mitigar
tal
risco
nanceiro,
os
contratos
de
exploração
e
de
produção
de
petróleo
utilizados
no
Brasil
também estabelecem
obrigações quanto à contratação de garantias de
descomissionamento
por
parte
das
petrolíferas.
Ocorre
que,
pela
ausência
de
pr
evisão
para
o
início
dos
projetos
de
descomissionamento,
a
regulação
do
tema
foi,
de
certa
forma,
postergada
pela
ANP
.
Contudo,
a
ausência
uma
r
esolução
especíca
que
estabelecesse
normas
claras
sobre
as
formas
de
apresentação
das
garantias
de
descomissionamento
criava
um
ambiente
de
insegurança
jurídica
e
de
incertezas
para
os
contratos
de
concessão
(Agência
Nacional
do
Petróleo,
Gás
Natural
e
Biocombustíveis
[ANP],
2019).
O
status
quo,
contudo,
começou
a
ser
alterado
no
início
da
década
de
2010,
em
decorrência
da
proximidade
do
m
dos
contratos
assinados
em
1995
entre
a
ANP
e
a
Petróleo
Brasileiro
S.A.
(Petrobras).
Entr
etanto,
a
discussão
sobre
descomissionamento
no
Brasil,
de
fato,
ganhou
consistência
a
partir
da
divulgação
do
plano
de
desinvestimento
da
Petrobras
em
2015,
que
previa
a
cessão
de
campos
de
produção
“maduros”,
isto
é,
campos
que
já
ultrapassaram
seu
pico
de
pr
odução.
Em
decorrência
desse
pr
ocesso
de
cessão,
os
fatores
de
risco
associados
à
indústria
petrolífera
no
país
sofreriam
alterações,
visto
que
entr
e
as
principais
interessadas
nos
ativos
disponibilizados
pela
Petrobras
estavam
pequenas
e
médias
empresas,
muitas
dessas
sem
experiência
prévia
no
setor
do
petróleo
(Chambriard, 2021).
53
4. A APLICAÇÃO DO NOVO ARCABOUÇO REGULA
TÓRIO -
PRIMEIROS CICLOS
Assim,
após
várias
r
odadas
de
discussão
sobre
o
tema
das
garantias
nanceiras
para
descomissionamento
com
órgãos
de
repr
esentação
das
empr
esas
petrolíferas,
de
instituições
nanceiras
e
de
outras
entidades
com
interesse
no
assunto,
em
27
de
setembro
de
2021,
foi
publicada
a
Resolução
ANP
nº
854/21.
T
al
resolução
tomou
como
referência
as
mais
moder
nas
normativas
inter
nacionais
sobre
o
assunto,
estabelecendo
os
procedimentos
Em
abril
de
2023,
a
ANP
publicou
em
seu
sítio
eletrônico
o
primeir
o
“Painel
Dinâmico
de
Garantias
Financeiras
de
Descomissionamento”,
no qual
constavam todos os campos
de petróleo
ou
gás
natural
em
fase
de
desenvolvimento
ou
de
produção
no
Brasil.
Conforme
disponível
no
r
eferido
painel,
em
2023,
um
total
de
396
campos estavam
obrigados a
apresentar
garantia
nanceira
em
alguma
das
modalidades
permitidas
pela
Resolução
ANP
nº
854/21,
quais
sejam:
carta
de
crédito,
seguro
garantia,
garantia
corporativa,
penhor
de
petróleo
e
gás
natural,
fundo
de
provisionamento
ou
um
termo
com
atributo
de
título
executivo
extrajudicial
por
meio
do
qual
a
própria
empresa
assegura
os r
ecursos nanceir
os
para o descomissionamento (ANP
, 2023).
O
valor total
das garantias
a
ser
em apresentadas
em 2023
foi de
R$ 82,7 bilhões,
o que
repr
esenta
37%
do
custo
total
do
descomissionamento
brasileiro,
que
era
estimado
em
2023
no
montante
de
R$
224
bilhões.
Em
r
elação
às
obrigações
de
apresentação
de
garantia,
os
valores
variavam
de
ínmos
R$
50,20
(campo
Piranema
Sul,
em
devolução
na
bacia
Sergipe)
até
substanciais
R$
8,8
bilhões
(campo
Albacora,
em
produção
na
relacionados
às
garantias
de
descomissionamento
no
Brasil.
Entretanto,
para
permitir
que
todas
as
instituições
nanceiras
e
o
próprio
setor
do
petróleo
se
adaptassem
às
inovações
trazidas
pela nova r
egulação, a Resolução
ANP nº 854/21
passou
a
ter
plena
efetividade
apenas
em
02
de
outubro
de
2023
1
,
passando
a
ser
aplicável
a
todos os
contratos
de exploração
e produção de
petróleo e gás natural.
1.-
De
acordo
com
a
Resolução
ANP
n°
854/21,
em
sua
primeira
versão,
as
contratadas
deveriam
apresentar
à
ANP
,
até
30
de
junho
de
2023,
garantias nanceiras
de descomissionamento
conforme
o valor
publicado
no sítio
eletrônico da
ANP
.
Contudo, com
a
publicação da
Resolução ANP 925/2023, a data limite foi postergada para 02 de outubro de 2023.
2.-
Material
divulgado
no
“Workshop
de
Apresentação
de
Garantias
da
ANP”,
em
2023,
indicou
um
custo
total
de
descomissionamento
no
Brasil na ordem de R$ 224 bilhões naquele
ano. Esse valor foi atualizado pela ANP em 2024 para
R$ 288 bilhões. Esses valores são próximos
de estudos
r
ealizados por
consultoria privadas, como
a Aurum
T
ank,
que estimou, em
2024, investimentos em
descomissionamento no
Brasil
da ordem
de R$ 306 bilhões
nos próximos 30
anos (https://aurumenergia.com.br/desmontagem-de-plataformas-pode-movimentar
-r
-306-bi/).
bacia
Campos).
Por
sua
vez,
no
que
se
refer
e
à
localização, a bacia
de Campos foi aquela
com o
maior
valor
a
ser
garantido
em
2023,
no
montante
de
R$
46,8
bilhões
2
,
o
que
repr
esenta
cerca
de
60%
do
total
de
garantias
do
ano,
conforme
ilustrado na Figura 1.
54
A
representatividade
da
bacia
do
Campos
no
custo
do
descomissionamento
brasileiro
não
chega
a
surpreender
.
T
al
bacia
teve
produção
iniciada
em
1977,
abrigando
os
primeiros
grandes
campos
e
poços
produtor
es
do
oshore
brasileiro,
sendo
ainda
hoje
a
bacia
com
o
maior
número
de
campos
em
produção
entr
e
todas
as
bacias
brasileiras.
Contudo,
a
ár
ea
tem
apresentado
uma
queda
progr
essiva
de
produção
na
última
década,
sendo
que
muitos
dos
campos
dessa
bacia estão
sendo desmobilizados ou
devolvidos.
Assim,
devido
a
proximidade
do
m
de
contrato
para
muito
desses
campos,
a
ANP
exige
um
valor
proporcionalmente
alto
em
garantia
de
descomissionamento para esses campos.
Por
seu
turno,
em
relação
à
responsabilidade
de
apresentar
tais
garantias,
a
Resolução
ANP
nº
854/21
determina
que
é
obrigação
da
operadora
do
contrato
apresentá-las,
ainda
que
seja
facultada
às
consorciadas
apresentarem
garantias
individualmente.
Por
esse
motivo,
o
Painel
Dinâmico
de
Garantias
Financeiras
de
Descomissionamento
relaciona
o
valor
a
ser
oferecido
em
garantias
para
determinado
campo
com
a
operadora
do
referido
contrato
de
exploração
e
produção.
Conforme
a
informação
disponibilizada
no
painel,
a
Petrobras
foi
a
operadora
com
o
maior
valor
a
ser
apresentado,
R$
64,4
bilhões
(cer
ca
de
80%
do
valor
total
em
2023).
Além
dela,
outras
quatro
operadoras
apresentam
valores
igual
ou
superiores
a
um
bilhão
de reais: Shell, R$
6,2 bilhões; Carmo Energy
, R$
2,7
bilhões;
Equinor
,
R$
1,6
bilhões;
e
T
rident
Energy
,
R$
1,0
bilhão.
Juntas
as
cinco
empresas
repr
esentaram
92%
do
valor
a
ser
garantido
em
2023, conforme apresentado na Figura 2.
Figura 1
V
alor das garantias nanceiras de 2023 por bacia, em percentual
Figura 2
V
alor das garantias nanceiras de 2023 por operador
, em percentual
Fonte: Elaboração própria a partir de dados publicados no Painel Dinâmico de Garantias
Financeiras de Descomissionamento - ANP (2023).
Fonte: Elaboração própria a partir de dados publicados no Painel Dinâmico de Garantias
Financeiras de Descomissionamento - ANP (2023).
55
Até
o momento,
ainda
não
foi
publicado pela
ANP
nenhum
relatório
ocial
que
detalhe
os
valores
recebidos
pelas
diferentes
modalidades
de
garantia
previstas
na
resolução.
Contudo,
Barbosa
et
al.
(2024)
apresentam
a
primeira
análise
dos
resultados
da r
egulação brasileira de
garantias de
descomissionamento.
Conforme
o
diagnóstico
elaborado pelos autores, em
2023, a modalidade
termo
que
assegure
o
descomissionamento
pela
própria
contratada
corr
espondeu
a
67,9%
do
montante
recebido,
tendo
sido
utilizada
por
duas
empresas.
A
segunda
modalidade
com
maior
repr
esentação
foi
a
garantia
corporativa,
correspondendo
a
15,8%
do
valor
recebido,
tendo
sido
a
modalidade
escolhida
por
quatr
o
empresas.
Outra
modalidade
amplamente
T
endo
em
vista
que
a
Resolução
ANP
nº
854/21
determina
que
o
valor
das
garantias
nanceiras
deve
ser
atualizado
anualmente,
em
abril
de
2024,
a
ANP
publicou
o
segundo
Painel
Dinâmico
de
Garantias
Financeiras
de
Descomissionamento
(ANP
,
2024).
Nesse
segundo
ano
de
regulação,
houve
um
acréscimo
do
valor
a
ser
assegurado,
que
passou
a
ser
de
R$
92,6
bilhões,
uma
elevação
de
12%
em
r
elação
ao
ano
anterior
.
Por
sua
vez,
esse
valor passou
a corresponder
a apenas
32%
do custo
total
do descomissionamento
brasileir
o,
estimado
em
R$
288
bilhões
em
2024.
A
bacia
de
Campos
permaneceu
corr
espondendo
a
cerca
de
60%
do
valor
a
ser
garantido,
bem
Figura 3
Distribuição das garantias de descomissionamento recebidas em 2023 por
modalidade, em percentual
Fonte: Barbosa et al. (2024).
utilizada foi
o segur
o garantia,
que foi a opção
de
28
petr
olíferas.
As
apólices
de
segur
o
garantia
foram
emitidas
por
nove
seguradoras
diferentes,
totalizando
8,8%
do
valor
assegurado.
T
ambém
popular
,
as
cartas
de
crédito
foram
a
escolha
de
23
empresas,
que
por
meio
de
sete
bancos
garantiram
2,6%
do
total
do
ano.
Completam
o
quadro,
o
penhor
de
petróleo
e gás
natural (4,9%)
e
o
fundo
de
pr
ovisionamento
(inferior
a
0,1%),
conforme demonstrado na Figura 3.
como a Petrobras se manteve como a operadora
responsável
por
apresentar
cerca
de
80%
do
valor das garantias.
56
T
abela 1
– Comparativo entre os valores de garantias de descomissionamento dos anos
2023 e 2024
Fonte: elaboração própria a partir de dados publicados no Painel Dinâmico de Garantias
Financeiras de Descomissionamento - ANP (2023) e ANP (2024).
Válido mencionar
, contudo, que dos 401
campos
listados
no
Painel
Dinâmico
de
Garantias
Financeiras
de
Descomissionamento
de
2024,
158
campos
(39%)
apr
esentam
valores
de
aporte
de
garantia
de
descomissionamento
inferiores
em
2024
quando
comparados
com
o
ano
de
2023,
totalizando
uma
redução
de
R$
9,2 bilhões. A
constatação da redução do valor
a
ser
garantido
em
2024
para
alguns
campos,
em
um
primeiro
momento,
levanta
questionamentos
quanto
à
adequação
da
metodologia
de
cálculo
do
valor
a
ser
garantido
anualmente
denido
na
Resolução
ANP
nº
854/21.
O
método,
chamado
Modelo
de
Aporte
Progr
essivo
(MAP),
prevê
Conforme
mencionado
nas
seções
anterior
es,
grande parte dos países produtor
es de petróleo
são
signatários
de
tratados
e
convenções
internacionais
que
os
obrigam
a
não
causar
poluição
oceânica.
Sendo
assim,
tais
países
são
passíveis
de
responsabilização
no
caso
do
descumprimento
dessa
obrigação
(Braga
&
Pinto,
2022).
Nesse
contexto,
diversos
países,
a
exemplo
dos
Estados
Unidos
e
do
Reino
Unido,
o
aumento
gradual
do
valor
garantido
a
cada
ano,
visando
alcançar
100%
do
custo
total
do
descomissionamento
ao
nal
do
contrato
de
exploração.
Entretanto,
no
caso
de
elevações
no
valor
das
reservas
provadas
e
prováveis
(2P),
de
extensões
de
prazo
do
contrato,
ou
mesmo
de
reduções
do
custo
estimado
das
atividades
de
descomissionamento,
o
valor
a
ser
garantido
pode
diminuir
,
ao
invés
de
aumentar
,
de
um
ano
para o outro.
5. DISCUSSÃO SOBRE APRIMORAMENTOS DO ARCABOUÇO
REGULA
TÓRIO BRASILEIRO VIGENTE EM 2024
estabeleceram
normas
nacionais
para
mitigar
o
risco
de
as
empresas
falharem
em
cumprir
com
suas
obrigações
de
m
de
vida
contratual,
deixando
para
os
governos
locais
(e
em
última
instância
seus
cidadãos)
a
conta
das
atividades
de
descomissionamento
(Department
for
Business,
Energy
&
Industrial
Strategy
,
2018;
Bureau
of
Ocean Energy Management, 2024).
57
Fica
claro,
portanto,
que
o
cidadão
é
o
destinatário
nal
das
políticas
de
garantias
de
descomissionamento.
Entretanto,
no
caso
brasileiro,
embora
a
ANP
tenha
publicado
a
Resolução
ANP
nº
854/21
e
dado
um
passo
a
mais
ao disponibilizar
no Painel
Dinâmico de
Garantias
de
Descomissionamento
informações
básicas
sobre
as
garantias,
percebe-se
que
informações
importantes
não
estão
sendo
compartilhadas
com
a
sociedade.
Dentre
tais
informações,
cabe
destacar
o
custo
total
de
descomissionamento
de
cada
campo,
o
que
corresponde
exatamente
ao
risco
nanceiro
suportado
pela
população
em
cada
projeto
no
caso
do
inadimplemento
do
operador
em
relação
às
suas
obrigações
contratuais.
Portanto,
aumentando
a
transparência
em
relação
aos
dados
do
setor
de
petróleo,
a
ANP
possibilitará
que
os
cidadãos
participem
ativamente
dos
fóruns
de
discussão
sobre
a
política
de
descomissionamento,
evitando
que
essas
ar
enas
de
debate
sejam
monopolizadas
pelas
empr
esas
petrolíferas
e
suas
entidades
repr
esentativas.
Ainda
no
campo
da
transparência,
cou
constatado
que
o
Painel
Dinâmico
de
Garantias
de
Descomissionamento
apresenta
a
informação
das
obrigações
de
garantia
conectada
apenas
aos
operadores
dos
contratos.
Contudo,
considerando
que
a
própria
Resolução
ANP
nº
854/21
determina
que
em
caso
de
consór
cios
todas
as
contratadas
serão
solidariamente
responsáveis pela solvabilidade das garantias
nanceiras, é
fundamental que a
sociedade tenha
acesso
ao
montante
de
garantias
nanceiras
a
ser
ofertado
por
cada
consorciada,
não
apenas
pelo
operador
.
Essa
informação
poderia
ser
útil,
por exemplo, para
fomentar estudos acadêmicos
sobre
a
denição
do
risco
nanceir
o
máximo
tolerável
para
cada
perl
de
petrolífera,
bem
como
para
a
elaboração
de
indicadores
de
qualidade
nanceira
que
poderiam
ser
utilizados
nos
processos de
aquisição
de
campos
maduros, ou
mesmo
pelas
instituições
nanceiras
na
hora
da
contratação das garantias.
Por
sua
vez,
cabe
reexão
mais
pr
ofunda
sobre
a real efetividade da própria política de garantias
nanceira
quando
vericado
que
cer
ca
de
90%
do
valor recebido pela ANP corr
esponde a garantias
em
que
a
própria
indústria
do
petróleo
assegura
os
recursos
nanceiros
para
o
cumprimento
das
obrigações
de
descomissionamento.
Malone
e
W
inslow
(2018),
ao
analisarem
as
recentes
falências
no
setor
de
mineração
dos
Estados
Unidos,
vericam
que
as
garantias
for
necidas
pelas
próprias
empresas
(autogarantias)
não
funciona
mais
como
um
mecanismo
ecaz
de
garantia
nanceira,
devendo
os
gover
nos
exigirem
garantia
nanceira
mais
rigorosas.
No
setor
petrolífer
o,
como
já
mencionado,
vericamos
os
mesmos
riscos
de
falência
de
empresas,
visto
que
a
crescente
exigência
de
descarbonização
da
economia
ameaça
o
futuro
da
indústria
do
petróleo,
podendo
limitar
a
capacidade
de
as
petrolíferas
concr
etizarem
os
lucros
planejados
para os atuais projetos de pr
odução.
Assim,
é
altamente
recomendado
o
compartilhamento
dos
riscos
inerentes
à
atividade
petrolífera
com
outros
setores
da
economia,
principalmente
o
setor
nanceiro.
Nesse
sentido,
Parente
et
al.
(2006)
defende
que
a
constituição
de
fundos
de
pr
ovisionamento
dedicados,
que
acompanhem
o
projeto
oshore
ao
longo
de
sua
vida
útil,
seria
a
opção
mais
adequada
para
diminuir
os
riscos
da
produção
em
campos
de
economicidade
marginal,
permitindo
que
as
atividades
de
descomissionamento
deixem
de
ser
encaradas
apenas
como
o
“m
de
vida”
de
um
ativo
energético,
mas
também
como
uma
parte
fundamental
da
economia
circular
e
do
desenvolvimento sustentável.
No
que
se
refere
à
r
edução
do
valor
do
aporte
de
alguns
campos
em
2024
quando
comparado
com
o
ano
de
2023,
percebe-se
que
o
contratado
detém
uma
grande
discricionariedade
na
denição
as
atividades
de
descomissionamento
que
efetivamente
serão
executadas
ao
m
do
contrato.
T
al
discricionariedade
permite
que
as
petrolíferas
adotem
metodologias
diferentes
de
abandono,
o
que
inevitavelmente
acarreta
diferentes
custos
a
ser
em
contabilizados
(Barbosa
et
al.,
2022).
Nesse
sentido,
cabe
ao
regulador
aprimorar
as
resoluções
que
determinam
quais
instalações
deverão
ser
removidas,
bem
como
denir
claramente
o
método
de
descomissionamento
a
ser empregado na elaboração das
estimativas de
custo de descomissionamento.
58
Ainda
no
tocante
aos
custos,
a
falta
de
experiência
dos
operador
es
na
execução
de
atividades
de
descomissionamento
tem
tor
nado
as
estimativas
de
custos
extr
emamente
voláteis.
Campos
operados
por
empresas
de
porte
similar
,
em
profundidades
de
lâmina
d’água
equivalentes
e
com
produções
semelhantes
podem
apr
esentar
estimativas
de
custos
difer
entes
devido
ao
nível
de
risco
que
cada
empresa
está
disposta
a
assumir
,
especialmente
em
relação
aos
riscos
de
lesões
ao
pessoal
designado
para
a
remoção
das
instalações
ou
estruturas.
Além
disso,
ainda
há
uma
carência
de
estudos
para
determinar
se
as
novas
petr
olíferas,
que
começaram
a atuar
na
indústria após
o processo
de desinvestimento
da
Petrobras,
realmente
apresentam
custos
inferiores
de
descomissionamento
ou
se,
na
ver
dade,
tais
estimativas estão subdimensionadas.
Por m, pode-se armar
que há baixos incentivos
para
que
as
empresas
apresentem
os
custos
de
descomissionamento
de
forma
acurada.
Devido
à
forma
que
o
Modelo
de
Aporte
Progr
essivo
foi
estabelecido,
quanto
maior
o
custo
estimado,
maior
será
o
valor
da
garantia
a
ser
apresentada
anualmente.
Por
consequência,
maiores
serão
os
gastos
das
petrolíferas
com
a
aquisição
de
instrumentos de garantia
nanceira. Portanto, em
um
típico
dilema
do
principal-agente,
em
condições
de
informação
assimétrica
e
incompleta,
as
contratadas têm
o incentivo
de apr
esentar custos
estimados na
extremidade
inferior do
espectro
de
possibilidades,
objetivando
reduzir
seus
custos
operacionais
(Mackie
&
V
elenturf,
2021).
Para
mitigar essa questão, a
ANP deve r
obustecer seu
corpo
técnico,
permitindo
a
criação
de
bases
de
conhecimento
independentes
da
conabilidade
das informações prestadas pelo contratado.
Conforme
visto,
a
crescente
urgência
da
ação
climática
em
linha
com
o
Acordo
de
Paris,
juntamente
com
a
adoção
de
fontes
de
energia
renováveis
e
tecnologias
energeticamente
ecientes
podem
afetar
signicativamente
o
futuro
da
indústria
do
petróleo.
Nesse
contexto,
devido
a
existência
de
tratados
que
restringem
a
poluição
oceânica,
gover
nos
ao
r
edor
do
mundo
têm
sido
compelidos
a
atualizar
seus
regulamentos
sobre
o
descomissionamento
de
plataformas
oshore
para
garantir
que
os
custos
dessa
atividade
sejam
internalizados
pela
indústria
petrolífera
e,
indiretamente,
pelos
consumidores
de
combustíveis
fósseis,
não
sendo
socializados
com a população geral de forma indiscriminada.
Por
sua
vez,
o
governo
do
Brasil,
país
com
um
dos
maiores
investimentos
pr
ojetados
em
descomissionamento
para as
próximas
décadas,
não
se
eximiu
de
sua
r
esponsabilidade
social,
e
tor
nou
mais
rígidas
e
claras
as
obrigações
6. CONSIDERAÇÕES FINAIS
relacionadas
às
garantias
do
descomissionamento
por
meio
da
publicação
da
Resolução
ANP
nº
854/21.
Contudo,
após
completado
o
primeiro
ciclo
de
apresentação
de
garantias,
foi
possível
analisar
os
principais
aspectos
em
que
o
arcabouço
regulatório brasileir
o vigente poderia evoluir
para
garantir
que
as
petrolíferas
assegurem
os
recursos
para
descomissionar
as
infraestruturas
de produção de petróleo a contento.
Dentre
as
principais
conclusões
da
análise,
destacou-se a
necessidade de a
ANP aperfeiçoar
a
transparência
das
informações
prestadas
à
sociedade
sobr
e
as
atividades
da
indústria
do
petróleo
atuante
no
país.
A
divulgação
de
informações,
tais
como
o
valor
estimado
do
descomissionamento
e
a
participação
de
cada
petrolífera
nos
contratos
de
pr
odução,
permitirá
que
os
cidadãos,
como
parte
interessada
nas
políticas
públicas
do
setor
,
tenham
o
conhecimento
necessário
que
os
habilite
a
59
participar
,
como
stakeholders,
dos
fóruns
de
discussão
sobre
as
evoluções
nas
regulações
sobre descomissionamento.
V
ericou-se,
também,
a
necessidade
de
aumentar
o envolvimento do
setor nanceiro no provimento
de recursos para assegurar o suporte econômico
das
atividades
de
descomissionamento,
como
forma
de
reduzir
o
risco
de
as
petrolíferas
falharem
em
cumprir com
suas obrigações
contratuais em
um
cenário
de
rápida
substituição
da
produção
petrolífera por fontes renováveis de energia. Além
disso,
foi
constatado
ser
imprescindível
reduzir
a
discricionariedade
dos
contratados
em
relação
à
denição
do
custo
do
descomissionamento,
por
meio
do
estabelecimento
de
uma
metodologia
padrão e do enriquecimento das
bases de dados
da ANP
.
Em síntese, os formuladores de políticas públicas
no
setor
de
petróleo
e
gás
natural
devem
ser
estimulados
a
ajustar
os
regulamentos
vigentes
para
responder
ao
complexo cenário
dos
combustíveis
fósseis,
antecipando-se
para
proteger
os
cidadãos
dos
custos
do
descomissionamento
das
infraestruturas
de
produção
oshor
e.
Nesse
sentido,
a
implementação
das
melhorias
regulatórias pr
opostas neste artigo contribuirá
para
que
países
como
o
Brasil
avancem
em
direção
a uma transição energética mais
justa, na
qual
os
custos
da
transição
sejam
adequadamente
suportados pelos seus respectivos r
esponsáveis.
60
7. REFERÊNCIAS
Agência
Nacional do
Petróleo, Gás
Natural
e Biocombustíveis.
(2019). Nota
Técnica
nº 64/2019/SDP
.
Pr
ocesso
Administrativo nº 48610.215088/2019-29.
Agência
Nacional
do
Petróleo,
Gás
Natural
e
Biocombustíveis.
(2023).
V
alor
a
ser
garantido
em
2023.
https://www
.
gov
.br/anp/pt-
br/assuntos/exploracao-e-producao-de-oleo-e-gas/desenvolvimento-e-
producao/garantias-
nanceiras-de-descomissionamento
Agência
Nacional
do
Petróleo,
Gás
Natural
e
Biocombustíveis.
(2024).
V
alor
a
ser
garantido
em
2024.
https://www
.
gov
.br/anp/pt-
br/assuntos/exploracao-e-producao-de-oleo-e-gas/desenvolvimento-e-
producao/garantias-
nanceiras-de-descomissionamento
Anderson,
O.
L.,
Weaver
,
J.
L.,
Dzienkowski,
J.
S.,
Lowe,
J.
S.,
Hall,
K.
B.,
Sourgens,
F
.
G.,
Sullivan,
H.
W
.,
&
Foundation,
R.
M.
M.
L.
(2020).
Inter
national
Petr
oleum
Law
and
T
ransactions.
Rocky
Mountain
Mineral
Law
Foundation. https://books.google.com.br/books?id=dLw7zgEACAAJ
Barbosa, L.
C. M.,
Michalowski,
G. R.,
ANA, J.
F
. S.,
Souza, K.
A. de,
Santos, M.
F
. O.,
& Vidal, P
. da
C. J.
(2022).
A importância das
informações para o planejamento
do descomissionamento de
instalações de exploração e
de
produção
de petróleo
e
gás
natural
no
Brasi.
Rio
Oil
&
Gas
2022:
T
echnical
Papers,
IBP
,
Rio
de
Janeir
o,
Brasil.
https://doi.org/10.48072/2525-7579.rog.2022.480
Barbosa, S.
A. C.,
Silva, M. C.
C. da,
Meneses, M. V
.
M. de, Pinto,
J. E.
de C., Saad,
H. C,
& Carneiro, M.
P
.
C.
(2024). Garantias de Descomissionamento
no Brasil: análise de resultados da regulação brasileira. Rio Oil & Gas
2024: T
echnical Papers, IBP
, Rio de Janeiro, Brasil. https://doi.org/10.48072/2525-7579.r
oge.2024.3341
Braga, L.,
& Pinto, H.
(2022). The nancial
aspects of
oshor
e
decommissioning and
Brazilian regulatory system
in
the
light
of
the
transnational
legal
order
.
The
Jour
nal
of
World
Energy
Law
&
Business,
jwac021.
https://doi.
org/10.1093/jwelb/jwac021
Bureau
of
Ocean
Energy
Management.
(2024).
Risk
Management
and
Financial
Assurance
for
OCS
Lease
and
Grant
Obligations.
Regulatory
Impact
Analysis.
https://downloads.regulations.gov/BOEM-2023-0027-2172/
content.pdf
Chambriard, M.
(2021). Regulação:
a
inserção dos
operadores independentes
no setor
de
O&G. Brasil
Energia,
Opinião,
publicado
em 05
de
maio.
https://brasilenergia.com.br/petroleoegas/opiniao/r
egulacao-a-insercao-dos-
operadores-independentes-no-setor
-de-og
Department
for
Business,
Energy
&
Industrial
Strategy
.
(2018).
Decommissioning
of
Oshore
Oil
and
Gas
Installations
and
Pipelines.
Guidance
Notes.
https://assets.publishing.service.gov
.uk/media/5c00f3f3e5274a0fdaaaa0f7/
Decom_Guidance_Notes_November_2018.pdf
Dernbach,
J. C. (1998). Sustainable Development as a
Framework for National Governance.
49 Case W
.
Res. L.
Rev
. 1, 59.
Fam,
M.
L.,
Konovessis,
D.,
Ong,
L.
S.,
&
T
an,
H.
K.
(2018).
A
review
of
oshore
decommissioning
regulations
in
ve
countries
–
strengths
and
weaknesses.
Ocean
Engineering,
160,
244–263.
https://doi.org/10.1016/j.
oceaneng.2018.04.001
FGV
Energia. (2022).
Aspectos técnicos
por
trás das
atividades de
descomissionamento:
Lições aprendidas do
outro lado do Atlântico. Cadernos FGV Energia, Ano 9, nº 14. ISSN 2358-5277.
61
FGV
Energia.
(2021).
Descomissionamento
Oshore
no
Brasil:
oportunidades,
desaos
&
soluções.
Cader
nos
FGV Energia, Ano 8, nº 11. ISSN 2358-5277.
Fiorati,
J.
J.
(1997).
A
Convenção
das
Nações
Unidas
sobre
Direito
do
Mar
de
1982
e
os
organismos
internacionais
por ela criados. Revista de Informação Legislativa, 133.
Hammerson,
M.,
& Antonas,
N. (2016).
Oil and
gas decommissioning:
Law
,
policy
,
and
comparative practice
(2nd
ed.). Globe Law and Business Limited.
International
Law
Commission.
(1958).
Convention
on
the
Continental
Shelf.
United
Nations,
499,
311.
https://
legal.un.org/ilc/texts/instruments/english/conventions/8_1_1958_continental_she lf.pdf
International
Maritime
Organization.
(1989).
Guidelines
and
Standards
for
the
Removal
of
Oshore
Installations
and Structures on the Continental Shelf and in the Exclusive Economic Zone.
Kaiser
,
M.J.
(2019).
Decommissioning
Forecasting
and
Operation
Cost
Estimation:
Gulf
of
Mexico
Well
T
rends,
Structure
Inventory
,
and
Forecast
Models.
Cambridge,
USA:
Gulf
Pr
ofessional
Publishing.
ISBN:
978-0-12-
818113.
Lockman,
M., Brauch,
M.
D.,
Rodríguez, E.
F
.
F
.,
& T
orres, J.
L.
G.
(2023). Decommissioning
Liability
at the
End
of
Oshore
Oil
and
Gas:
A
Review
of
Inter
national
Obligations,
National
Laws,
and
Contractual
Approaches
in
T
en
Jurisdictions.
Sabin
Center for
Climate
Change
Law
& Columbia
Center
on
Sustainable
Investment. https://
scholarship.law
.columbia.edu/sabin_climate_change/205
Loia,
F
.,
Capobianco,
N.,
&
V
ona,
R.
(2022).
T
owards
a
resilient
perspective
for
the
future
of
oshore
platforms:
Insights from a
data-driven approach. T
ransforming Gover
nment: People, Process and
Policy
,
vol. 16,
no. 2, pp.
218–230, January 1.
Mackie,
C.
&
V
elenturf,
A.
P
.
M.
(2021).
T
rouble
on
the
horizon:
Securing
the
decommissioning
of
oshore
renewable
energy
installations
in
UK
waters.
Energy
Policy
,
Elsevier
,
V
ol.
157(C).
https://doi.org/10.1016/j.enpol.2021.112479
Mackie,
C.,
&
Fogleman,
V
.
(2016).
Self-Insuring
Environmental
Liabilities:
A
Residual
Risk-Bearer’
s
Perspective.
16 J. Corp. L. Stud. 293, 296.
Malone,
J.,
&
W
inslow
,
T
.
(2018).
Financial
assurance:
Environmental
protection
as
a
cost
of
doing
business.
North
Dakota Law Review
, 93(1).
Martin,
A.
T
.
(2023).
Decommissioning
of
Inter
national
Petroleum
Facilities
evolving
Standards
and
Key
Issues.
OGEL Energy Law Journal, nº 5. www
.ogel.org/article.asp?key=765
Panetta,
F
.
(2022).
Greener
and
cheaper:
Could
the
transition
away
from
fossil
fuels
generate
a
divine
coincidence?
https://www
.ecb.europa.eu/pr
ess/key/date/2022/html/ecb.sp221116~c1d5160785.en.html
Parente,
V
.,
Ferreira,
D.,
Moutinho
Dos
Santos,
E.,
&
Luczynski,
E.
(2006).
Oshore
decommissioning
issues:
Deductibility and transferability
. Energy Policy
, 34(15), 1992–2001. https://doi.org/10.1016/j.enpol.2005.02.008
Paterson, J. (2010). Decommissioning of Oshor
e Oil and Gas Installations. In Oil and Gas Law: Curr
ent Practice
and Emerging T
rends (2nd ed., pp. 285–329). https://doi.org/10.3366/edinburgh/9781845861018.003.0010
United
Nations
General
Assembly
.
(1982).
Thir
d
United
Nations
Confer
ence
on
the
Law
of
the
Sea.
https://
digitallibrary
.un.org/recor
d/542895
Welsby
,
D.,
Price, J.,
Pye,
S., &
Ekins,
P
.
(2021).
Unextractable fossil
fuels
in a
1.5
°C world.
Nature, 597(7875),
230–234. https://doi.org/10.1038/s41586-021-03821-8
63
Industrial development for the ener
gy
transition in latin america: Lessons
lear
ned fr
om wind ener
gy for gr
een
hydr
ogen in Ar
gentina
Desarr
ollo industrial para la transición energética en
américa latina: lecciones apr
endidas de la energía eólica al
hidrógeno ver
de en Argentina
1.- Carolina Pasciar
oni, Departamento de Economía UNS,IIESS-CONICET
,
carolina.pasciar
oni@uns.edu.ar
2.- Regina Vidosa, Centro de Estudios Urbanos y Regionales- CONICET
, reginavidosa@gmail.com
3.- Jésica Sarmiento, jesicaisarmiento@gmail.com
4.- María Eugenia Castelao Caruana, Fundación Bariloche- CONICET
,
eugeniacastelao@conicet.gov
.ar
5.- Mariana Zilio, Departamento de Economía UNS, IIESS-CONICET
, mzilio@uns.edu.ar
6.- Carina Guzowski, Departamento de Economía UNS, IIESS-CONICET
, cguzow@criba.edu.ar
Carolina Pasciar
oni
1
, Regina Vidosa
2
, Jésica Sarmiento
3
, María Eugenia Castelao Caruana
4
,
Mariana Zilio
5
, Carina Guzowski
6
Recibido: 13/11/2024 y Aceptado: 21/1/2025
64
65
La
transición
energética
se
ha
consolidado
como
una
tendencia
global,
exigiendo
una
profunda
transformación de
la matriz energética
a través
de la eliminación
progresiva
de los
combustibles fósiles
y
la
incorporación de
diversas tecnologías
para
la
generación
de
energía a
partir de
fuentes
renovables.
Este
trabajo
analiza
los
pr
ocesos
de
aprendizaje
tecnológico
e
innovación
observados
durante
el
surgimiento
y
la
consolidación
de
la
industria
eólica
en
Argentina,
con
el
objetivo
de
desarrollar
hipótesis
sobre
la
interacción
entre
la
demanda
y
el
ciclo
tecnológico
en
el
impulso
de
la
innovación
en tecnologías de energías
r
enovables,
como la industria del hidrógeno verde, en países periféricos.
A
partir
de
una
metodología
de estudio
de caso,
nuestro
análisis sugier
e
que las
empresas
basadas en
la
explotación
de
r
ecursos
naturales
podrían
no
ser
tan
cruciales
en
el
proceso
de
aprendizaje
tecnológico,
especialmente durante la
fase inicial del ciclo. En
cambio, los proveedor
es
intensivos en conocimiento
desempeñan
un papel
más
r
elevante
en
el proceso
de innovación
que
r
odea
la
transformación de
los
recursos naturales vinculados a la energía. No
obstante, persisten interrogantes sobr
e
la especicidad
de los
recursos naturales energéticos
y su
potencial para
generar oportunidades
para el
desarr
ollo de
redes de conocimiento locales.
The energy transition
has emerged as
a global trend,
requiring
a pr
ofound transformation of
the energy
matrix by gradually eliminating fossil fuels and incorporating diverse technologies for power generation
from
renewable
sources.
This
paper
delves
into
the
technological
learning
and
innovation
processes
observed during Argentina’
s wind industry emergence and consolidation to develop hypotheses about
the interplay between demand and the technological cycle in driving innovation around r
enewable
energy technologies, for example the green hydr
ogen industry
, in peripheral countries. Based on a
case
study
methodology
, our
analysis suggests
that natural
resource-based
rms may
not be
as critical
in the technological learning process, particularly during the emergence phase of the cycle. Instead,
knowledge-intensive
suppliers
play
a
more
signicant
role
in
the
innovation
process
surrounding
the
transformation of
energy-related
natural r
esources. However
, questions
remain
regar
ding the specicity
of
energy-related
natural
resour
ces
and
their
potential
to
create
opportunities
for
the
emergence
of
local
knowledge networks.
P
ALABRAS CLA
VE:
Energía
eólica,
hidrógeno
verde,
ciclo
tecnológico,
innovación,
desarrollo
industrial
KEYWORDS:
W
ind energy
, green hydr
ogen, T
echnological cycle, innovation, industrial development.
Resumen
Abstract
66
1. INTRODUCTION
For
some
decades
now
,
the
energy
transition
has
emerged
as
a
global
trend
that
demands
an
active
strategy
fr
om
States
to
transform
the
challenges
of
this
process
into
opportunities
for
industrial
development
in
emerging
countries.
This
tr
end
requir
es
a
profound
transformation
of
the
energy
matrix,
which
implies
the
gradual
elimination
of
fossil
fuels
(United
Nations,
2023)
and
the
incorporation
of
diverse
technologies
for
energy
generation
from
r
enewable
sources.
These
technologies
are
in
dierent
stages
of
development
and,
even
though
their
adoption
and
diusion
may
enhance
the
comparative
advantages
of
the
energy
sector
,
their
impact
on
the
technological
dynamism
of
its
associated
industries
is
unclear
.
For
example,
wind
energy
has
a
high
penetration
rate
in
South
American
energy
markets
(IRENA,
2023a)
and
its
diusion,
within
an
appropriate
institutional
and
economic
framework,
has
facilitated
the
installation
of
factories
for
blade
production
in
Brazil
and
tower
production
in
Argentina.
At
the
same
time,
green
hydrogen
is
in
a
phase
of
feedback
between
technological
development
and
demonstration
on
a
global
scale.
Still,
countries
in
the
region
continue
to
outline
their
institutional
frameworks
without
achieving
signicant
technological
advances,
except
in
Chile
where the country’
s rst hydrogen fuel cell
vehicle
was homologated (OLADE, 2023).
In
the
last
decade,
within
the
framework
of
neo-Schumpeterian
and
Evolutionary
theories,
various
academic
studies
have
suggested
that
the
processes
of
learning
and
innovation
around
industries
based
on
the
exploitation
of
natural
resour
ces,
such
as
those
dedicated
to
the
generation
of
r
enewable
energy
(RE),
ar
e
relevant
for
economic development.
These works
highlight
the
r
ole
that
natural
resource-based
industries
have
in
the
technological
dynamism
of
the
network
of
actors
that
supplies
them
with
equipment,
services,
and
knowledge
and
their
economic
and
technological
r
elevance
in
South
American
economies.
However
,
they
also
point
out
that
there are conditions that
enable these
pr
ocesses,
which
are
expressed
in the
demand conguration,
the
industrial
organization,
the
technology
cycle,
and
the
institutional
context
(Andersen,
Marín,
&
Simensen,
2018;
Crespi,
Katz,
&
Olivari,
2018;
Katz
&
Pietrobelli,
2018). This
work
focuses
on
how
the
demand
conguration
and
the
technology
cycle
of
the
wind
energy
industry
,
in
general,
may
have
inuenced
the
lear
ning
and
innovation
processes
of
this
industry
in
Argentina
over
the
past
two
decades.
By
distilling
lessons
fr
om
this
context,
we
gain
insights
into
the
current
opportunities
and
challenges
for
the
emerging
green
hydrogen
sector in leveraging economic development.
67
2. DEMAND AND TECHNOLOGICAL LIFE CYCLES: EVIDENCE
FROM WIND ENERGY FOR GREEN HYDROGEN
Over
the
past
two
decades,
the
renewable
energy
industry
has
witnessed
two
signicant
trends:
i)
a
scale
expansion
in
response
to
countries’
eorts
to
achieve
energy
security
and
more
sustainable
economic
gr
owth,
and
ii)
increased
internationalization
resulting
from
the
export
of
energy
technologies
(Kim
&
Kim,
2015).
A
prime
example
of
these
trends
is
China’
s
entry
into
the
global
renewable
energy
market
through
manufacturing
equipment
for
wind
power
and
solar
photo
voltaic
energy
(Gandenberger
&
Strauch,
2018; Kim
&
Kim,
2015). The
promotion
of
national
wind
power
demand
and
its
role
as
a
catalyst
for
competitive
technology
development,
primarily
in
terms
of
price
rather
than
quality
,
explains
China’
s
active
participation
in
the
global
energy
market
(Lin
&
Chen,
2019;
Gandenberger
& Strauch, 2018).
However
,
the
empirical
evidence
r
egarding
the
impact
of
demand–pull
policies
on
the
development
of
energy
technologies
remains
inconclusive (see
review by
Lin and
Chen (2019)).
This
ambiguity
may
be
attributed
to
the
varying
degrees
of
maturity
reached
by
dierent
energy
technologies.
In
their
comparative
study
of
wind
power
and solar
photovoltaic,
Kim
and
Kim (2015)
found evidence supporting a positive bidirectional
relationship
between
domestic
R&D
investment
and
technology
export.
Notably
,
these
results
were
more
pr
onounced
in
wind
power
compar
ed
to
solar
photovoltaic,
with
the
latter
being
considered
a more matur
e technology
.
These
ndings
about
the
role
of
demand
concerning
the
maturity
of
technologies
have
led
to
the
T
echnological
Life
Cycle
(TLC)
concept
to
comprehend the
long-term
patterns
of innovation
and
diusion
processes
within
the
energy
matrix.
According
to
the
TLC
model
pr
oposed
by
Anderson
and
T
ushman
(1990),
the
cycle
begins
with
a
disruptive
discovery
that
opens
new
opportunities
and
technological
trajectories.
This
is
followed
by
a
fermentation
stage,
where
technologies
compete
within
a
highly
uncertain
environment.
Then,
the
third
stage
sees
the
emergence
of
a
dominant
technological
design.
Finally
,
the
fourth
stage
involves
incremental
change,
where
the
technology
gradually
evolves
until
a
new
technological
discontinuity
disrupts
the
trajectory
and
r
estarts
the
cycle.
Utterback
and
Abernathy
(1975)
present
a
stylized
representation
of the TLC akin to
an inverted U, which combines
considerations
about
the
type
of
innovation
-product
or
process-
that
predominates
at
each
stage
of
the
cycle.
Davies
(1997)
later
dierentiates
technological
patter
ns
based
on
whether
they
pertain
to
mass-produced
goods
or
complex
products and systems.
From
the
perspective
of
the
TLC,
wind
power
is
in
a
phase
of incr
emental change
(Huenteler
, Schmidt,
Ossenbrink,
&
Homann,
2016;
Kalthaus,
2020;
Madvar
,
Ahmadi,
Shirmohammadi,
&
Aslani,
2019),
suppliers
of
wind
energy
equipment
have
enhanced
the
quality
of
their
products
(Huenteler
et
al.,
2016)
and
there
has
been
a
steady
decrease
in
wind
energy
prices.
Drawing
on
the
contributions
of
Davies
(1997),
the
complexity
of
energy
technologies,
and
thus
the
associated
pattern
of
technological
evolution,
is
determined
by
two key
factors:
i) the
complexity of
the product’
s
architectur
e,
and
ii)
the
scale
of
the
production
process.
Huenteler
et
al.
(2016)
concluded
that
wind power
is characterized by
its complexity and
by
incremental
changes
that
combine
product
and
process
innovations,
with
the
latter
predominating.
It’
s
important
to
highlight
that
the
trajectory
of
wind
power
technology
involves
a
diverse
range
of
contributors
and
knowledge
sources.
As
per
the
ndings
of
Kalthaus
(2020)
in
Germany
,
non-
specialized
and
unrelated
knowledge
played
a
signicant
role
during
the
fermentation
phase
of
wind
power
.
This
can
be
attributed
to
the
involvement
of
technicians
and
engineers
who
aimed
to
enhance
environmental
conditions
and
oer
technical
alternatives
to
traditional
energy
.
In
subsequent
phases,
the
amalgamation
of
new
,
specialized
knowledge,
as
well
as
r
elated
knowledge
gained
prominence.
This
suggests
an
impending
discontinuity
associated
with
oshore
68
wind
power
,
marked
by
the
participation
of
shipping
rms
in
technological
development.
The
presence of local industries engaged in turbine
manufacturing, competitive on
a global scale, is
a
positive factor
for the
national wind
energy sector
expansion
and
knowledge
generation
in
this
eld
(Zhang,
T
ang,
Su,
&
Huang,
2020).
This
underlines
the
importance
of
a
diverse
knowledge
base
and
cross-industry
collaboration
in
advancing
renewable energy technologies.
Ampah et al.
(2023) demonstrate that
water
-based
technologies
for
producing
green
hydrogen
are
experiencing
varied
stages
of
evolution:
photolysis
is in an emerging
phase, thermolysis is in a growth
stage,
and
meanwhile,
electrolysis
has
reached
maturity
.
Over
the
past
ve
years,
signicant
advancements
have
been
made
in
areas
such
as
cell
design,
electr
odes,
electr
olytes,
electrolytics,
processes,
and
control
methods.
It’
s
worth
noting
that
while
hydrogen
generation
through
electrolyzers
is
a
technology
utilized
in
industrial
processes,
it
has
not
yet
been widely
adopted
for
power
generation
due
to
the
need
for
cost
reduction.
Consequently
,
the
critical
points
in
research
and
development
in
this
eld
include
the
use
of
renewable
energies
(wind
and
solar)
as
a
source
of
electrolysis,
increasing
eciency
,
and
reducing
consumption
and
energy
costs,
among
others.
Dehghanimadvar
,
Shirmohammadi,
Sadeghzadeh,
Aslani,
and
Ghasempour (2020)
apply the
Gartner Hype Cycle
model
to
abroad
range
of
renewable
and
non-
renewable
technologies
to
explain
their
stage
of
development.
They arm
these
technologies ar
e
at
dierent
phases,
primarily
concentrated
between
the
disillusionment
stages
(photo
fermentation
and dark fermentation),
the slope of enlightenment
phase
(photo
electrochemical,
thermochemical
water
decomposition,
and
PV
electrolysis),
and
the
nal
pr
oductivity
stage
(electr
olysis,
fossil
fuel
reforming,
and coal
gasication).
Interestingly
,
none
of
these
technologies
are
found
in
the
rst
two
stages
of
the
Gartner
Hype
Cycle,
which
ar
e
the
innovation
trigger
and
peak
of
inated
expectations.
T
echnological
development
in
lagging
economies
exhibits
unique
characteristics
derived
from
the
local
industrial
trajectory
,
the
inuence
of
Foreign
Direct
Investment, the
role
of Global
V
alue Chains,
and
restrictions
arising
from
compliance
with
international
regulations
and
standards
(Crespi
et
al., 2018; Katz
& Pietr
obelli, 2018). A
comparative
study
between
Brazil
and
China
reveals
the
dierential
strategies
pursued
and
their
impact
on
knowledge
generation
in
the
wind
energy
eld. While both countries
have capitalized on the
inux
of
foreign
technology
,
China
has
oriented
its
strategy
towards
learning
and
developing
national
technology
,
resulting
in
patents
and
national
brand
turbines.
In
contrast,
Brazil
still
relies
on
Foreign
Direct
Investment
(Gandenberger
&
Strauch,
2018).
In
Argentina,
the
lack
of
coordination
between
energy policies
and
science
and technology
policies, coupled with
their lack
of
continuity
,
has
posed
a
limitation
to
technological
development
in
the
eld
of
wind
energy
(Aggio,
V
erre, & Gatto, 2018; Stubrin & Cr
etini, 2023).
69
This
study
adopts
a
case
study
approach
to
analyze
the
technological
lear
ning
trajectory
of
the
domestic
wind
turbine
industry
in
Argentina.
The
analysis
centers
on
two
domestic
rms
that
demonstrated
the
capacity
to
develop
and,
to
a
certain
extent,
commercialized
their
wind
turbine
designs.
While
this
case
study
does
not
encompass
a
comprehensive
historical
perspective,
it
delves
into
the
institutional
trajectory
,
strategies,
and
technological
capabilities that
these two
key local
industry
players
built
over
the
years.
In
addition,
the
resear
ch
explores
the
economic,
technological,
and
political
landscapes
that
underpin
the
emergence of a green hydrogen industry
, both
on
a global and national scale.
The
wind
energy
industry
emerged
in
the
1970s
in
countries
like
Denmark,
Germany
,
and
the
United
States.
But
it
was
in
the
late
1990s
when
the
technology
design
consolidated
and
competition
among
rms
began
to
be
focused
on
the
internationalization
of
technology
to
emerging
countries
(Gipe
&
Möllerström,
2023;
V
erbong,
Geels,
&
Raven,
2008).
Until
then,
vertical
integration
in
wind
turbine
manufacturing
had
pr
edominated,
r
esulting
fr
om
the
organic
expansion
of
the
incumbent
companies
and
its
concentration
through
mergers
and
acquisitions
(Jacobsson
&
Johnson,
2000).
But
around
mid-2000,
the
inter
nationalization
pr
ocess
changed
the
business
model
giving
way
to
the
emergence
of
suppliers
–mostly
not
knowledge-
intensive–
located
in
the
same
countries
wher
e
wind
farms
were
installed,
while
bigger
rms
continued to
specialize in
wind
turbine design
and
manufacturing.
So,
by
the
decade
of
2000,
wind
energy technology
was matur
e,
even though,
as it
was
mentioned
previously
,
its
innovative
process
has
remained
focused
on
improving
the
product
throughout
its
life
cycle,
shifting
fr
om
the
cor
e
sub-system
to
the
broader
range
of
subsystems
3. METHODOLOGY
4. WIND ENERGY TRAJECTOR
Y
These
industries
were
chosen
due
to
their
relevance
to
the
energy transition
agenda
in
South
American
countries
and their
distinct technological,
market,
institutional,
and
organizational
characteristics
up
to
the
present
day
(Castelao
Caruana
et
al.,
2023).
The
analysis
is
based
on
the
information
collected
from
multiple
secondary
sources
and
semi-structured
interviews
with
representatives
from both industries.
and
components
that
comprise
wind
energy
(Huenteler
et
al.,
2016).
During
those
years,
the
demand
for
wind
energy
in
the
countries
of
the
Southern
Cone
was
divergent, especially
in
Brazil
(Figure
1).
Some
countries,
such
as
Argentina,
Chile,
Peru,
and
Uruguay
,
managed
to
increase
their
installed
capacity
,
r
eaching
values
between
700-4,500
MW
,
while
the
rest
of
the
countries
hover
ar
ound
50-60
MW
,
on
average.
The
rapid
increase
of
the
wind
energy
installed
capacity
in
Brazil
can
be
attributed
to
the
execution
of
national
public
programs
specically
designed
for
RE,
such
as
the
PROINF
A
that
in
2002
oered
feed-in
tari
schemes
through
20-year
contracts
for
wind
farms,
biomass,
and
small
hydroelectric
plants
(Eirin,
Messina,
Contreras
Lisperguer
,
&
Salgado, 2022).
In
Argentina,
the
national
government
implemented
a
program
to
promote
electricity
generation
from
RE
sources
in
the
late
´90
that
promoted
the
installation
of
some
wind
farms
with
Eur
opean
technology
.
However
, the benets of
this pr
ogram
were diluted with the exit from the xed exchange
rate
regime
called
convertibility
that
the
country
70
went
through
in
2001.
It
was
not
until
2009
that
the
national
government
again
promoted
the
installation
of
this
type
of
technology
with
the
GENREN
program
under
the
orbit
of
ENARSA.
1
This
program
tendered
contracts for
the electricity
supply
from
RE
sources,
incorporating
incentives
for
wind
farms
to
develop
with
equipment
and
components
produced
locally
.
However
,
it
had
a
partial
impact.
Even
though
it
tendered
contracts
for
500
MW
and
obtained
oers
for
1,000
MW
(approving
754
MW),
by
the
beginning
of
2018
1.-
Energía
Argentina
S.A.
(ENARSA)
is
a
company
owned
by
the
national
government,
established
in
2004
to
exploit
and
commercialize
hydrocarbons, natural gas, and electric energy
.
only
two
wind
farms
with
130
MW
had
been
completed,
and
10
wind
farms
with
445
MW
had
started
and
interrupted
their
works.
This
was
due
to
an
unstable
macroeconomic
context
that
strongly
conditioned
access
to
inter
national
nancing.
In
this
context,
two
national
wind
turbine
manufacturers
emerged
–IMPSA
and
NRG
Patagonia –
which drove
the development
of local
suppliers.
Some years
later
, within
the framework of
national
Law
27.191/2016,
the
RenovAr
program
and
the
Renewable
Energy
T
erm
Market
(MA
TER)
once
again
promoted
the
growth
of
wind
energy
demand in the country
. The former was a national
tender
program
for
electricity
supply
contracts
from
ER
sources
that
provided
tax
benets
associated
with
the
incorporation
of
national
components
established
by
Law
27.191.
The
latter
,
also
regulated
by
this
law
,
is
a
market
for
electricity
supply
contracts
from
renewable
sources
between
large
users
(with
consumption
greater
than
or
equal
to
300
KW)
and
generators
of
this
type
of
energy
participating
in
the
Wholesale
Electric
Market
(MEM).
However
,
this
institutional
Figure 1.
Electricity Installed Capacity fr
om Wind Energy (MW) by Country (2007-2023)
Source: own elaboration with data fr
om IRENA (2024)
framework
did
not
prioritize
the
development
of
domestic
technology
and
associated
local
linkages
(Aggio
et
al.,
2018;
Cappa,
2023),
but
the
growth
of
the
renewable
energy
sector
in
a
complex
macroeconomic
context
marked
by
energy scarcity
.
71
2.- Founded in
Argentina in 1907,
IMPSA achieved a
signicant international pr
esence, operating in
40 countries and
maintaining a workfor
ce
of
3,500
employees.
Subsequently
,
by
2021,
this
gure
had
decreased
to
720,
and
the
company
is
currently
undergoing
a
process
of
corporate restructuring.
3.- W
ithin the framework of
this program, two 1.5 MW
wind turbines were installed in
El T
ordillo wind farm, one
designed, built, and
installed
by NRG
Patagonia and the
other by
IMPSA Wind. Both
were put
into operation in
2009/10, but the
park began operating
in the
MEM in
2013.
Its
owner
was
Vientos
de
la
Patagonia
I,
comprised
of
ENARSA
and
the
Province
of
Chubut.
IMPSA
Wind
also
signed
two
contracts
with
Arauco 1
Wind
Farm, owned
by the
state energy
company La
Rioja SAPEM
(75%) and
ENARSA, to manufacture,
operate, and
maintain 15
IWP-83
wind turbines
of 2.1
MW and
11
wind turbines
of 2
MW each.
This wind
farm
was inaugurated
in 2011.
In addition,
in
2015 IMPSA
Wind
installed 4 wind turbines of
2 MW each in
El Jume wind farm, owned
by the public company Energía
Santiago del Estero S.A. (IMPSA,
2024; (Aggio et al., 2018).
At
the
beginning
of
the
2000,
IMPSA
(Industrias
Metalúrgicas
Pescarmona
S.A)
was
a
transnational
company
with
Argentine
capital
2
,
dedicated
to
developing
complex
hydroelectric
energy projects and designing and
manufacturing
capital
goods
for
these
and
other
industries.
Its
advanced
technological
capabilities
and
the
expansion
of
its
production
capacities
beyond
Latin
America
enabled
IMPSA
to
access
global
and
distant
markets
such
as
Asia,
Europe
and
North
America
(Papa
&
Hobday
,
2015).
In
2003/4,
with
a
strong
commitment
to
innovation,
IMPSA
began
a
technological
learning
pr
ocess
for
the
design
and
manufacture
of
wind
turbines
based
on
its
knowledge
and
experience
in
uid
mechanics
and
synchronous
generators
from
the
design
and
manufacture
of
hydroelectric
power
plants,
handling
of
high
structures
and
frequency
conversion
derived fr
om the
design
and
manufacture
of
port
cranes
and
control
systems.
By
2005,
when
the
average
power
of
wind
turbines globally
was ar
ound 1.0–1.3 MW
and the
most
consolidated
European
companies
began
to
internationalize, IMPSA
developed
a
1.0 MW
wind
turbine
that was
tested in
a
wind farm
in
Argentine
Patagonia. Although
this machine did
not reach a
year of
life due to problems in
the contr
ol system,
this
milestone
inaugurated
the
IMPSA
W
ind
business
unit,
marking
the
rm’
s
foray
into
the
wind
energy
industry
.
However
,
Brazil’
s
growing
economy
and
dynamism
of
the
wind
market
by
mid-2000,
compar
ed
to
Argentina’
s
economic
decline
and
wind
market
halt,
convinced
IMPSA
to
shift
their
main
wind
operations
and
assets
towards Brazil (Papa & Hobday
, 2015). Given that
the
market
was taking
o
in
this
country
and that
mature
technologies
already
existed
inter
nationally
,
the
company
chose
to
accelerate
the
technological
4.1. IMPSA
learning
process
by
acquiring
the
license
fr
om
V
ensys,
a
German
rm
to
manufacture
a
direct
transmission
wind
turbine
of
1.5
MW
.
By
2007/8
the
company
inaugurated
its
subsidiary
named
W
ind
Power
and
a
production
facility
to
produce
wind
turbines
and
generators
in
this
country
.
Motivated
by
local
regulations
that
established
60%
national
content,
IMPSA
promoted
the
development
of
local
and
r
egional
suppliers
that
allowed
the
diversication
of
the
supply
chain,
and
the
growth
of
the
industry
associated
with
the
sector
in
Brazil.
By
2014,
IMPSA
was
the
third
producer
of
wind
energy
in
this
country
.
It
was
building
wind
farms
for
480
MW
and
it
had
a
contract
for
the
manufacture,
installation,
and
operation and
maintenance of
287 generators
for
574
MW
for
2018.
In
Argentina,
IMPSA
developed
the
rst
wind
turbine
with
its
own
technology
in
Latin
America,
called
UNIPOWER®
IWP-70
of
1.5
MW
,
which
obtained inter
national certication
in
2010.
This
wind
turbine
and
the
subsequent
ones
-IWP83
and
IWP-100-
were
manufactured
in
the
IMPSA
Argentina
facilities,
reaching
a
local
content
of
72
%
in
the
IWP100
model
of
2
MW
.
In
parallel,
IMPSA
obtained
contracts
with
public
companies
for
the
provision
of
wind
turbines
within
the framework
of the
GENREN program between
2009 and 2011
3
.
As
in
Brazil,
the
development
of
this
equipment
encouraged
the
cr
eation
of
a
solid
network
of
local
suppliers
for
the
sector
that
included
the
production
of
towers
and
components
of
the
turbines,
the
repair
of
wind
blades
and
nacelles,
the
construction
and
protection
of
foundations
and
towers,
and
the
manufacture
of
electronic
controls.
However
,
this
demand
was
unstable
over
time
and
uncoordinated
from
industrial
and
scientic
72
policy
(Aggio
et
al.,
2018).
Despite
the
various
improved models that
the company
developed to
stay
at
the
fore
front
of
the
inter
national
industry
,
by
2015
the
power
of
its
IWP-100
model
was
lagging
the oer
of large
international
companies,
which,
along
with
other
barriers,
made
it
dicult
to
enter
the RENOV
AR (T
able
1).
By
the end
of
2016,
40%
of
the
installed
power
came
fr
om
turbines
manufactured
by
companies
from
Denmark
and
23%
from
France,
only
27%
from
Argentina
(Aggio
et al., 2018).
NRG Patagonia
was created in
2006 in
Argentina
by
domestic companies
in the
oil
and
gas industry
that
detected
the
window
of
opportunity
posed
by
the
absence
of
wind
turbines
adapted
to
the
winds
of
Patagonia
at
an
international
level.
The
rst
Wind
Farms
installed
in
this
r
egion
in
the
90s
showed
the
lack
of
specic
information
about
the
regional
wind
resour
ces
(dierent
from
the
pr
edominant
in
Eur
ope)
and
of
technology
adapted
to
its
characteristics.
The
company
then
acquir
ed
the
design
of
a
Class
II
turbine
in
Germany
with
software
from
Denmark
and
hired
German
engineering
to
adapt
it
to
the
requir
ements
of
the
winds
of
Patagonia
(Class
I),
seeking
that most
of the
parts wer
e
manufactured
in
Argentina.
In
this
way
,
it
developed
inter
nal
productive
capacities
to
manufacture,
assemble,
mount,
and
operate
Class
I
turbines
of
1.5
MW
,
while
the
rest
of
the
components
were
acquir
ed
from
suppliers,
many
of
them
local.
One
bought
the license for
the electric generator abroad to
be
able to manufacture it in the country
.
As
happened
with
IMPSA,
this
technology
was
initially
installed
in
El
T
ordillo
W
ind
Farm
in
2019/10 owned by a public company to integrate
a
park
of
3
MW
,
located
in
Comodoro
Rivadavia,
Province
of
Chubut.
However
,
the
initiative
was
discontinued
and
given
the
fall
in
projected
demand
and the
diculty
in
accessing local
public
and private nancing,
the scaling of the
pr
ototype
Due
to
various
nancial
events in
Argentina, Brazil,
and
V
enezuela,
IMPSA
had
to
restructure
its
capital at
the beginning of
2018. Currently
, IMPSA
is a company
dedicated to
the EPC of
wind farms
and
SFV
,
including
the
production
of
hydrogen,
the
repair
of
large
wind
equipment,
and
the
pr
ovision
of
operation
and
maintenance
services,
including
the application of AI for preventive maintenance.
4.2. NRG Patagonia
wind
turbine
for
Class
I
winds
was
discontinued.
However
,
by
2014,
the
company
embarked
on
the
development of
a
Class
II
team in
consortium
with
the
National
University
of
Patagonia
San
Juan
Bosco
and
with
economic
support
from
Ministry
of
Science
and
T
echnology
for
about
6
million
USD.
The
development
involved
the
inter
nal
capacities
of
the
rm’
s
engineers
and
external
specialists
from
Europe.
Although
initially
this
turbine
was
thought
of
as
a
suitable
technology
to
generate
energy
with
the
wind
resour
ce
available
in
other
parts
of
the
country
,
given
the
increase
in
the
power
of
foreign
turbines,
it
became
a
suitable
team
(fr
om
1
to
2
MW)
for
low-scale
users
–
electric
cooperatives,
municipalities
and/or
small
and medium-sized enterprises- located
in r
egions
with
not
so
extreme
winds
4
.
This
segment
is
a
niche
with
potential
from
the
creation
of
MA
TER
and
Law
27.424/2017
of
distributed
generation
of
low
interest
for
large
multinational
companies.
Currently
,
these
wind
turbines
have
around
50%
of national components from 12 local companies.
In
addition
to
this
strategy
,
the
company
created
ENA
T
in
2016,
a
spin-o
that
capitalizes
on
the
techno-productive
knowledge
and
market
acquired
in the wind market
by the rm to pr
ovide
knowledge
services
such
as
detection
of
sites
with
energy
resour
ces
of
interest,
design
of
wind
farms
or
pre-feasibility
analysis
of
connection
to
the electrical system.
4.- In 2021, NRG Patagonia installed a 1.5 MW Wind turbine for self-consumption by the Castelli Cooperative in Buenos Aires Province.
73
Green
hydrogen
has
ar
oused
great
expectations
at the
global level
due to
its potential
as an
energy
vector
for
renewable
energy
sour
ces,
like
wind
and
solar
photovoltaic
energy
.
Its
development
could
complement
other
sources
of
energy
and
promote
the
decarbonization
of
energy-intensive
industries
(steel,
chemicals,
cement,
and
transport)
as
well
as
other
sectors
that
use
hydr
ogen
in
their
production
processes
(petrochemicals,
food,
and
electronics)
(Zabaloy
,
Guzowski,
&
Didriksen,
2021).
In
addition,
hydrogen
and
its
derivatives
have
a
comparative
advantage
in
specic
applications
required
by
sectors
that
need to stabilize the
networks supplied by a large
proportion
of
intermittent
sour
ces,
such
as
solar
photo voltaic and wind power (IRENA, 2023b).
Green
hydrogen is
produced
by the electr
olysis of
water
,
which
requir
es
both
the
availability
of
fresh
water
and
a
renewable
energy
source.
In
Latin
America,
there
is
a
convergence
of
both
natural
resour
ces
in
their
potential
to
produce
it,
as
auctions
in Chile, Mexico, and Brazil oer the
lowest prices
for
wind
power
and
solar
photovoltaic
energy
in
the
world,
and
water
scarcity
is
not
a
constraint
for
most
countries
in
the
region.
So, the
development
The
analysis
of
this
sector
shows
several
issues.
First,
the specicity
of the
NR
-winds with
gr
eater
load
capacity
and
turbulence
in
the
Patagonia
region–
represented
an
opportunity
that
only
some
companies
with
a
trajectory
in
the
energy
sector could identify at the beginning
of the ´2000
given
the
low
level
of
specialized
knowledge
that
existed
in
the
country
about
this
industry
.
Even
so,
the
specicity
of
this
NR
did
not
repr
esent
a
barrier
to
entry
for
foreign
companies
because
it
is an
NR with
similar characteristics
in other parts
of
the
world
and
also
in
those
years
the
global
wind
industry
was
already
mature
and
relatively
concentrated
–
although
more
dispersed
than
at
present
-
and
under
a
dynamic
of
innovation
focused
on
the
continuous
improvement
of
the
subsystems
and
components
that
make
up
wind
energy
,
which
quickly closed
this
window
of
opportunity
.
However
,
in
less
than
a
decade,
the
national
companies
analyzed
managed
to
develop
the
necessary
technological
capacities
to
take
advantage
of
this
opportunity
through
a
learning
process
based
on
inter
nal
mechanisms
(existing
capacities)
and
exter
nal
(license
purchase)
in
the
case
of
IMPSA
and
merely
external
in
the
case
of
NRG
(hiring
of
engineering
for
the
adaptation
of
an
existing
design
to
local
r
equirements),
at
least
in
the
rst
stage.
This
lear
ning
process
was
supported
by
a
timid
internal
demand,
essentially
driven
by
public
companies, but
also,
in
the
case
of
IMPSA,
by
an
exter
nal,
regional,
and
dynamic
demand.
5. GREEN HYDROGEN, AN EMERGING INDUSTR
Y
of
green
hydr
ogen
in
Latin
America
could
be
an
advantage
for
potential
consumers
further
away
from
the
region,
such
as
China,
the
Eur
opean
Union
or
the
USA,
as
they
could
compensate
for
the
distance
with
cheap
r
enewable
energy
and
less
risk
of
geopolitical
conict
than
those
from
closer
, but more politically unstable regions.
The
challenge
for
Latin
American
countries
is
to
dene
how
to
develop
the
energy
transition
for
which
they
have
the
natural
resour
ces
but
not
the
capital
or
the
technology
,
considering
that
hydrogen
production
is
complex
and
requires
long-term
investments
that
allow
innovation
in
the
construction
of
production
plants,
storage,
and
transportation,
as
well
as
in
the
electrolysers
production.
Electrolysis
seems
to
be
a
highly
modular
technology
with
a
steep
lear
ning
curve.
Electrolysis
could
be
today
what
solar
photovoltaic
energy
was
0
to
15
years
ago,
on
the
verge
of
moving
from
niche
to
mainstream
technology
.
While
this
nascent
sector
is
still
developing,
electrolysers
made
in
China
are
75%
cheaper
than
those
made
in
the
West,
according
to
Bloomberg
New
74
Energy Finance. This is
a gap that Latin American
countries
should
close
if
they
are
to
develop
a
competitive
hydrogen
ecosystem,
as
they
have
an
important
endowment
of
natural
resour
ces
for
low-emission
hydrogen
production
but
are
still
far
from
the
technological
fr
ontier
of
electr
olyser
production.
In
Argentina,
the
search
for
insertion
in
this
ecosystem
led
to
the
emergence
of
some
projects
promoted
by
public
and
private
companies
(Hychico,
Y
-TEC),
and
others
by
foreign
companies
and
organizations, with
varying
degrees
of
progr
ess.
Hychico
has
a
pilot
plant
in
Chubut that
pr
oduces
120 m3 of
gr
een
hydr
ogen
per
day
using
wind
energy
,
currently
destined
for
the
domestic
market.
The
pr
oject,
launched
in
2008,
is
a
spin-o
of
the
CAPEX
Company
with
a
track
recor
d
in
the
conventional
energy
sector
and
is
an
example
of
synergy
between
fossil
and
renewable
energies:
two
wind
farms
and
two
electr
olysers
at
the
foot
of
a
conventional
eld.
At
the
same
time,
Y
-TEC
–a
technology
company
of
YPF
and
Consejo
Nacional
de
Investigaciones
Cientíticas
y
Técnicas-
launched
a
consortium
for
the
development
of the
hydr
ogen
economy
in
Argentina
in
2020,
called
H2Ar
,
to
create
a
collaborative
workspace
between
local
companies
inter
ested
in
integrating
the
blue
or
green
hydrogen
value
chain
(YPF
,
2022).
On
the
other
hand,
foreign
entities
-such
as
the Australian
company
Fortescue
Future,
the
Fraunhofer
Institute
of
Germany
,
and
the
MMEX
Resour
ces
Corporation
of the
U.S.A.-
have
evidenced
a deep
interest
in
promoting
green
hydrogen
production
in
Argentina.
These
exter
nal
actors
have
focused
on
studying
the
available
natural
resources
and
their
environment
–
wind
and
water
sources
and
topography
-
to
assess
the
technical
and
economic
feasibility
of
installing
green
hydrogen
production
plants
power
ed
by
wind
energy
,
proposing
the
emergence
of
hydrogen
hubs
in
the
provinces
of
Buenos Aires, Río Negr
o, and T
ierra del Fuego.
Despite
all
these
actions,
there
are
few
technical
and
environmental
studies
to
assess
the
impact
of
green
hydrogen
production
and
poor
standards
to
regulate
the
activity
.
In
recent
years,
the
international
context
has
promoted
the
interest
of
the
State,
both
at
the
national
and
pr
ovincial
levels,
but
there
is
still
no
broad
consensus
on
the benets this sector could bring to the country
,
on the
role of
government
in promoting it,
and on
the
role
of
hydrogen
as
part
of
industrial
policy
(Castelao Caruana, et al. 2023).
The
rst
Hydrogen
Promotion
Act
(Law
26.123)
was
introduced
in
2006
to
pr
omote
research
and
development
of
technologies
to
produce
hydrogen
from
renewable
and
non-renewable
sources
(Guzowski,
Zabaloy
,
&
Ibañez
Martín,
2022),
expiring
at
the
end
of
2021
due
to
a
lack
of
regulation.
In
2023,
the
national
government
submitted
a
new
draft
law
on
the
promotion
of
hydrogen
production,
which
was
strongly
criticized
because of the
35% national content requir
ement
for
each
project
(including
electrolysers
and
power
generation
equipment),
the duration
of
the
promotion scheme,
the
r
equirement
to contribute
a
percentage
of the
investment to
a
future
specic
allocation
fund,
and
the
multiplicity
of
agencies
involved
in
hydrogen
regulation.
In
September
2023,
the
National
Strategy
for
the
Development
of
the
Hydrogen
Economy
pr
esented
the
basis
for
the
promotion
of
low-emission
hydrogen,
but
the
change
of
government
in
December
put
all
hydrogen-r
elated
regulations
(including
the
draft
law)
on
hold
and
does
not
seem
to
have
the
will
to move
forward,
at least
in the
short and
medium
term.
75
This
work
delves
into
the
technological
learning
and
innovation
process
observed
during
the
emergence
and
consolidation of
the wind
industry
in
Argentina
to
develop
some
hypotheses
about
the
r
ole
the
inter
play
between
demand
and
the
technological cycle may have
in driving innovation
around
renewable energy
technologies, especially
green hydr
ogen, in peripheral countries.
This
paper
focuses
on
the
trajectory of
Argentina’
s
wind industry
, analyzing
the technological
learning
processes
undertaken
by
IMPSA
and
NRG
Patagonia
over
the
last
two
decades.
Initially
,
these
companies
designed
and
manufactured
wind
turbines
tailored
to
the
unique
wind
conditions
of
the
Patagonian
region.
We
juxtapose
this
evolution
with
global
wind
industry
trends
and
internal
and
external
demand
policies
that
inuenced
these
learning
processes.
Our
ndings
propose
hypotheses
applicable
to
understanding
learning
dynamics in other emerging energy industries.
The
r
esults
show
that despite
mature technology
,
there
remain
opportunities
for
technological
innovation
when local
or
r
egional
market
diusion
T
able 1.
Non-exhaustive mile stones on the evolution of the wind industry at dierent scales
of analysis
Source: own elaboration fr
om secondary sources
6. CONCLUSIONS
is
limited.
While
the
accumulated
technological
capabilities
and the
lear
ning
process
play
a
pivotal
role
in the
initial
stages,
internal demand
becomes
central
during
technology’
s
take-o
phase,
especially
for
in-house
designs.
Notably
,
exter
nal
demand
from
countries
wher
e
the
technology
is
not
yet
widespread
can
also
drive
technological
development.
Brazil’
s
role
in
IMPSA
’
s
consolidation
as
a
wind
turbine
supplier
exemplies
this
phenomenon.
Contrary
to
prevailing
literature,
our
study
suggests
that
natural
r
esource-based
rms
may
not
be
as
critical
in
the
technological
lear
ning
process,
particularly
during
the
emergence
phase
of
the
cycle.
Instead,
knowledge-intensive
suppliers —those involved in designing, adapting,
and
manufacturing
technology—play
a
more
signicant
role
in
the
innovation
pr
ocess
around
the
transformation
of
energy-related
natural
resour
ces.
Doubts
arise
r
egarding
the
level
of
specicity
of
energy-related
natural
resour
ces
and
their
potential
to
open
windows
of
opportunity
for
the
emergence
of
local
knowledge
networks.
Regardless
of
whether
these
opportunities
exist,
or
rms seek
to
capitalize
on those
resulting from
foreign
technology diusion, they
must thor
oughly
understand the sector
and develop the
necessary
technological
and
commercial
capabilities
to
achieve technological innovation.
These
observations
are
important
for
the
current
learning
process
around
green
hydrogen
production,
as
there
is
alr
eady
an
international
industry
advancing
towards
its
consolidation
and
the
electrolysis
technology
is
maturing.
In
Argentina,
a
few
local
companies
with
fr
ontier
technological
capabilities
are
studying
the
process
of
green
hydr
ogen
pr
oduction
to
become
key
players
in
the
domestic
industry
,
not
so
much
in
the
production of
electrolysers
as
in
the
pr
ovision
of
equipment
or
services
to
upgrade
production
processes.
Given
the
lack
of
a
supportive
institutional
framework
and
the
neoliberal
political
context
in
the
country
,
questions
arise
regar
ding
the
potential opportunities
the external
demand of
green
hydrogen
and
its
by-products-this
time
from
developed
countries-
may
bring
for
technological
learning and innovation in this nascent sector
.
7. REFERENCES
Aggio,
C.,
V
erre,
V
.,
&
Gatto,
F
.
(2018).
Innovación
y
marcos
regulatorios
en
energías
renovables:
el
caso
de
la
energía eólica en la Argentina. DT14.
Ampah, J.
D., Jin,
C., Fattah,
I. M.
R., Appiah-Otoo,
I., Afrane,
S., Geng,
Z., .
. .
Liu, H. (2023).
Investigating the
evolutionary
trends
and
key
enablers
of
hydrogen
pr
oduction
technologies:
A
patent-life
cycle
and
econometric
analysis. International Jour
nal of Hydr
ogen Energy
, 48(96), 37674-37707.
Andersen,
A.,
Marín,
A.,
&
Simensen,
E.
(2018).
Innovation
in
natural
resource
based
industries:
a
pathway
to
development?
Introduction
to
special
issue,
Innovation
and
Development,
8(1),
1-27.
doi:https://doi.
org/10.1080/2157930X.2018.1439293
Anderson, P
., & T
ushman, M. L. (1990). T
echnological Discontinuities and Dominant Designs: A Cyclical Model of
T
echnological Change. Administrative Science Quarterly
, 35, 604-633.
Cappa,
A.
(2023).
Las
reglas
de
contenido
local:
el
caso
de
los
aerogenerador
es
en
el
programa
RENOV
AR.
Impacto económico y factor
es condicionantes. T
esis de Maestría. FLACSO. Sede Académica Argentina, Buenos
Aires.
Castelao
Caruana,
M.E.,
Pasciar
oni,
C.,
Guzowski,
C.,
Castr
o,
M.,
Zabaloy
,
M.F
.,
&
Martin
Ibañez,
M.M.
(2023).
Aprendizaje e
innovación
en las
industrias
de
energía de
fuentes
renovables en
Argentina:
mer
cado,
tecnología,
organización e instituciones. Revista T
empo do Mundo, (32), 133-165.
Crespi,
G.,
Katz,
J.,
&
Olivari,
J.
(2018).
Innovation,
natural
resour
ce-based
activities
and
growth
in
emerging
economies:
the
formation
and
role
of
knowledge-intensive
service
rms.
Innovation
and
development,
8(1),
79-
101. doi:https://doi.org/10.1080/2157930X.2017.1377387
Davies,
A.
(1997).
The
life
cycle
of
a
complex
product
system.
Inter
national
Journal
of
Innovation
Management,
1(03), 229-256.
77
Dehghanimadvar
,
M.,
Shirmohammadi,
R.,
Sadeghzadeh,
M.,
Aslani,
A.,
&
Ghasempour
,
R.
(2020).
Hydrogen
production technologies: attractiveness and futur
e perspective. Inter
national Journal of Energy Research, 44(11),
8233-8254.
Eirin,
M.
S.,
Messina,
D.,
Contreras
Lisperguer
,
R.,
&
Salgado,
R.
(2022).
Estudio
sobre
políticas
energéticas
para la
promoción
de las
energías renovables
en apoyo
a la
electromovilidad.
In (V
ol. Documentos de
Proyectos).
Santiago: Comisión Económica para América Latina y El Caribe.
Gandenberger
, C., & Strauch, M. (2018). W
ind energy technology as opportunity for catching-up? A comparison
of the TIS in Brazil and China. Innovation and development, 8(2), 287-308.
Gipe,
P
.,
&
Möllerström,
E.
(2023).
An
overview
of
the
history
of
wind
turbine
development:
Part
II–The
1970s
onward. Wind Engineering, 47(1), 220-248.
Guzowski,
C.,
Zabaloy
,
M.
F
.,
&
Ibañez
Martín,
M.
M.
(2022).
Y
el
hidrógeno
se
hizo luz
¿Qué oportunidades
ofrece
el hidrógeno verde para la sostenibilidad del sistema energético argentino? Comisión de Estadísticas, Estudios y
Publicaciones, Asociación de Mujeres en Energías Sustentables de Argentina (AMES).
Huenteler
,
J.,
Schmidt,
T
.
S.,
Ossenbrink,
J.,
&
Homann,
V
.
H.
(2016).
T
echnology
life-cycles
in
the
energy
sector—T
echnological
characteristics
and
the
role
of
deployment
for
innovation.
T
echnological
Forecasting
and
Social Change, 104, 102-121.
IMPSA (2024). Parques eólicos. A
vailable: www
.impsa.com/productos/wind/par
ques-eolicos/
IRENA
(2023a).
Regional T
r
ends.
Abu
Dhabi:
International
Renewable
Energy
Agency
.
Available: www
.irena.org/
Data/View-data-by-topic/Capacity-and-Generation/Regional-T
rends
IRENA
(2023b).
Green
Hydrogen
for
Sustainable
Industrial
Development.
Abu
Dhabi:
International
Renewable
Energy
Agency
,
Available:
www
.irena.org/Publications/2024/Feb/Gr
een-hydrogen-for
-sustainable-industrial-
development-A-policy-toolkit-for
-developing- countries.
IRENA (2024), Renewable Capacity Statistics 2024, Abu Dhabi: International Renewable Energy Agency
.
Jacobsson, S., &
Johnson, A. (2000). The
diusion of r
enewable energy technology:
an analytical framework and
key issues for resear
ch. Energy Policy
, 28(9), 625-640.
Kalthaus,
M.
(2020).
Knowledge
recombination
along
the
technology
life
cycle.
Journal
of
Evolutionary
Economics,
30(3), 643-704.
Katz, J., &
Pietr
obelli,
C. (2018). Natural resour
ce based growth, global value
chains and domestic capabilities in
the mining industry
. Resources Policy
, 58, 11-20.
Kim,
K.,
&
Kim,
Y
.
(2015).
Role
of
policy
in
innovation
and
international
trade
of
renewable
energy
technology:
Empirical
study
of
solar
PV
and
wind
power
technology
.
Renewable
and
Sustainable
Energy
Reviews,
44,
717-
727.
Lin, B.,
& Chen,
Y
. (2019). Impacts of
policies on
innovation in
wind power
technologies in
China. Applied
Energy
,
247, 682-691.
Madvar
,
M.
D.,
Ahmadi,
F
.,
Shirmohammadi,
R.,
&
Aslani,
A.
(2019).
Forecasting
of
wind
energy
technology
domains based on the technology life cycle approach. Energy Reports, 5, 1236-1248.
OLADE
(2023).
Panorama
Energético
de
América
Latina
y
el
Caribe
2023.Quito:
Organización
Latinoamericana
de Energía.
78
Papa,
J.,
&
Hobday
,
M.
(2015).
Running
Against
the
W
ind
in
Argentina:
The
Building-Up
of
T
echnological
Capabilities
to
Overcome
Economic
Adversity
.
Available:
http://eprints.brighton.ac.uk/14914/1/2015%20
Hobday%20Running%20against%20the%20wind%20(2).pdf
Stubrin, L.,
& Cr
etini, I. (2023).
T
ransición energética
y oportunidades
de desarr
ollo tecnológico local.
H-Industria:
Revista de historia de la industria y el desarrollo en América Latina, 17(32), 3.
United Nations
(2023) COP28
naliza con
una llamada
a la
«transición lejos»
de los
combustibles fósiles, Centro
Regional
de
Información.
Available:https://unric.org/es/cop28-introduce-por
-primera-vez-los-combustibles-
fosiles/
Utterback,
J.
M., &
Abernathy
,
W
.
J.
(1975). A
dynamic
model
of
pr
ocess
and
product innovation.
Omega,
3(6),
639-656.
V
erbong,
G., Geels,
F
.
W
.,
& Raven,
R.
(2008). Multi-niche
analysis of
dynamics and
policies
in Dutch
r
enewable
energy
innovation
jour
neys
(1970–2006):
hype-cycles,
closed
networks
and
technology-focused
learning.
T
echnology Analysis & Strategic Management, 20(5), 555-573.
Zabaloy
,
M.
F
.,
Guzowski,
C.,
&
Didriksen,
L.
(2021).
Hidrógeno
verde
en
Argentina:
desarrollo
actual
y
perspectivas
a future. Energía y Desarr
ollo Sustentable: energías renovables en América del Sur
, 2(6), 35-51.
Zhang, F
.,
T
ang, T
., Su,
J., &
Huang, K.
(2020). Inter
-sector network
and clean
energy innovation:
Evidence from
the wind power sector
. Journal of cleaner production, 263, 121287.
79
T
echno-economic assessment of the
use of gr
een hydr
ogen: case study in
the ceramic industry
1.- Sergio Luiz Pinto Castiñeiras-Filho, Department
of Mechanical Engineering of PUC-Rio and Institute of Energy
of PUC-Rio, sergiocastfh@
gmail.com, https://orcid.org/0000-0002-7933-1763
2.-
Guilherme
Fortunato,
Department
of
Mechanical
Engineering
of
PUC-Rio
and
Institute
of
Energy
of
PUC-Rio,
fortunato345@gmail.com,
https://orcid.org/0009-0001-5914-5277
3.- Sidnei Cardoso, School of Business IAG PUC-Rio, sidnei.car
doso@phd.iag.puc-rio.br
, https://orcid.org/0000-0002-7212-6652
4.- Luis Fernando Mendonça Frutuoso, Institute of Energy of PUC-Rio, lmendonca@puc-rio.br
, https://orcid.org/0000-0003-0687-5230
5.- Florian Pradelle,
Department of Mechanical
Engineering of
PUC-Rio and Institute
of Energy of
PUC-Rio, pradelle@puc-rio.br
, https://orcid.
org/0000-0003-4306-8083
6.- Edmar Fagundes de Almeida, Institute of Energy of PUC-Rio, edmar@puc-rio.br
, https://orcid.org/0000-0001-8068-2555
7.- Eloi Fernández y Fer
nández, Institute of Energy of PUC-Rio, eloi@puc-rio.br
, https://orcid.org/0000-0002-2033-197X
Sergio Luiz Pinto Castiñeiras Filho
1
, Edmar Fagundes de Almeida
2
, Guilherme Fortunato
3
,
Luis Fernando Mendonça Frutuoso
4
,Sidnei Cardoso
5
, Florian Pradelle
6
,
Eloi Fernández y Fer
nández
7
Recibido: 12/11/2024 y Aceptado: 4/2/2025
80
81
La
industria
cerámica
en
Brasil
consume
volúmenes
signicativos
de
gas
natural,
generalmente
para
atender pr
ocesos que
requier
en altas temperaturas. Así,
el uso de
H2 de bajo carbono
se convierte en
una
alter
nativa
potencial
para
ser
introducida
en
la
matriz
energética
del
sector
,
bajo
una
modalidad
de auto-generación
y auto-consumo, con
el n de r
eemplazar par
cialmente el consumo de
gas natural
en
procesos
industriales.
Se
realiza
un
modelado
técnico-económico,
utilizando
la
herramienta
H2V
-
IEPUC, sobr
e un estudio
de caso r
ealizado en colaboración
con una empr
esa de
la industria
cerámica.
La
escala
de
producción
y
uso
de
H2
se
estimó
con
base
en
proyectos
inter
nacionales
y
tomando
como
refer
encia
los
procesos
industriales
actualmente
implementados
en
una
fábrica.
La
viabilidad
del
pr
oyecto
de
hidrógeno
ver
de
se
demuestra
mediante
un
análisis
de
sensibilidad
con
variables
técnicas y económicas,
además de
presentar
un escenario determinista
de viabilidad.
La compr
ensión
del
estudio
de
caso
contribuye
a
los
subsector
es
de
la
industria
al
arrojar
luz
sobre
las
ventajas
y
barreras relacionadas con la
incorporación de
H2 de
bajo carbono en
las operaciones,
contribuyendo
a la construcción de proyectos ambiental y económicamente sostenibles.
The
ceramic
industry
in
Brazil
consumes
signicant
volumes
of
natural
gas,
usually
for
attending
to
processes
that
require
high
temperatures.
Thus,
the
use
of
low-carbon
H2
becomes
a
potential
alternative
to
be
introduced
into
the
sector’
s
energy
matrix,
under
a
self-generation
and
self-consumption
modality
,
in order to partially
r
eplace natural
gas in industrial
pr
ocesses.
T
echnical-economic
modeling is carried
out,
using
the
H2V
-IEPUC
tool,
on
a
case
study
conducted
in
partnership
with
a
ceramic
industry
company
.
The
scale
of
production
and
use
of
H2
wer
e
estimated
based
on
international
projects
and
taking
as
a
refer
ence industrial
processes
currently
implemented at
a factory
. The
feasibility of
the gr
een
hydrogen pr
oject is demonstrated by carrying out a sensitivity analysis with technical and economic
variables,
in
addition
to
presenting
a
deterministic
feasibility
scenario.
The
understanding
of
the
case
study contributes to industry subsectors by shedding light on the advantages and barriers related to
the
incorporation
of
low-carbon
H2
in
operations,
contributing
to
the
construction
of
pr
ojects
that
are
environmentally and economically sustainable.
P
ALABRAS CLA
VE:
Palabras
clave:
hidrógeno,
electrólisis,
oxígeno,
proceso
de
alta
temperatura,
cerámica.
KEYWORDS:
hydrogen, electr
olysis, oxygen, high-temperature process, ceramic
Resumen
Abstract
82
1. INTRODUCTION
The
ceramic
industry
can
be
divided
into
two
main
categories:
red
ceramics
and
white
ceramics.
Red
ceramics
ar
e
typically
associated
with
large-scale
structural
uses
in
civil
construction
(bricks,
tiles,
etc.),
and
are
produced
by
using
rewood
as
the
predominating
energy
sour
ce
in
Brazil
(EPE,
2018).
White
ceramics,
on
the
other
hand,
generally
consist
of
higher
-quality
pr
oducts
(ooring,
tiles,
porcelain,
etc.)
that
serve
more
specic
functions
and
r
equire
a
higher
energy
intensity
in
manufacturing
(e.g.,
in
the
drying
process).
In
this
case,
natural
gas
predominates
in
Brazil
as
the
main fuel
along
such
a
manufacturing
chain.
Among
the
emerging
uses
of
H₂,
processes
involving
high-temperature
heat
(above
400
ºC)
can
benet
from
this
r
esource
as
a
form
of
decarbonization,
presenting
as
a
competitive
alternative
to
electrication
(IEA,
2024;
ENGIE,
2022).
In
this
way
,
the
energetic
use
of
hydrogen
can
help
preserve
existing
industrial
assets
and
avoid
the
need
for
developing
disruptive
technologies.
Green
H₂,
derived
from
water
electrolysis
using
renewable
energy
(such
as
hydric,
solar
,
and
wind), is
an energy
source capable of
serving this
class
of
processes
as
a
substitute
for
fossil
fuels.
In
particular
,
the
Brazilian
electricity
grid
could
be
suitable
for
green
hydrogen
production,
since
hydropower
stands
out
with
a
share
of
almost
60%
as
one
of
the
main
primary
energy
sources
(EPE,
2024).
As
long
as
the
hydric
scenario
in
the
country
is
favorable,
the
grid
can
sustain
a
low-carbon
intensity
with
reliable
provision,
for
example,
facilitating
the
certication
of
hydrogen
in
strict
schemes
(CCEE,
2024).
Overall,
the
combination
of
renewable
electricity
resources
in
Brazil
can
allow
elevated
operational
factors,
enabling
the
economic
feasibility
of
electr
olysis
projects
while
guaranteeing
the
environmental
attribute of hydrogen.
Notably
,
international experiences
in the ceramics
industry
have
adopted
pilot
plants
to
use
green
hydrogen.
For
example,
a
ceramic
company
in
Villareal,
Spain,
has
invested
in
the
GREENH2KER
decarbonization
project,
which
aims
to
replace
50%
of
natural
gas
with
green
H₂
(IBERDROLA,
2021).
Another
recent
experience
that
endorses
the
technical
feasibility
of
using
a
hydrogen-
natural
gas
mixtur
e
in
the
ceramic
industry
is
a
project
developed
in
Castellarano,
Italy
.
Success
was reported for
tests with
fuel blends containing
7% H2
to decarbonize
the operation
of a
kiln, and
there is an expectation to
use mixtur
es with up
to
50% H2 (IRIS, 2024).
Finally
,
although
carbon
credits
tend
to
be
the
main
coproduct
in
economic
assessments
involving
low-
carbon
H2,
the
O2
copr
oduced
in
electr
olysis
is
usually neglected.
Actually
,
only specic
industrial
sectors
(steel
industry
,
healthcare
systems
in
hospitals,
submarine
projects)
use
it
at
relevant
scales
(IEA,
2023).
Dedicated
O₂
production
systems
tend
to
be
costly
for
use
in
enhanced
combustion
processes,
and
therefor
e
combustion
is
conducted
commonly
with
air
as
comburent.
It
is
noteworthy
that
some
studies
are
giving
purpose
to
this
byproduct.
Novaes
et
al.
(2024)
evaluated
a
Power
-to-Liquid
process
sourced
with
green
H2
to
produce
wax
and
syncrude
as
main
products.
The
r
evenue
associated
with
O2
presented
a
share
of
13%
among
the
outputs,
being
also
almost
four
times
more
representative
than the selling
of carbon credits. Assunção et al.
(2025)
modeled
the
use
of
an
electr
olysis
system
in
order
to
supply
H2
for
fuel
cell
vehicles
(i.e.,
ambulances)
while
O2
was
stor
ed
for
attending
to
the
healthcare
systems
in
a
hospital.
Avoiding
the
cost
of
buying
O2
allowed
a
reduction
of
the
levelized
cost
of
Hydrogen
(LCOH)
from
4.96
to
2.60
USD/kg.
Finally
,
León
et
al.
(2024)
studied
a
bolder
model
for
a
cement
factory
in
Spain,
in
which
synfuels
are
produced
by
combining
CO2
from
ue
gases
and
hydr
ogen
fr
om
electr
olysis;
the
coproduced
O2
was
appraised
thr
ough
an
oxy-combustion
applied to
a calcination
pr
ocess.
Thus,
the
possibility of
designating a
concrete
use
for O2
can promote
the economic feasibility
of H2
derived from water electr
olysis.
83
In
this
context,
this
study
aims
to
assess
the
partial
substitution
of
natural
gas
with
green
H₂
in
the
white
ceramic
sector
,
focusing
on
a
drying
process
at a
concrete
ceramic
facility
in
São
Paulo
state, Brazil (DEL
T
A, 2024). A feasible
substitution
level
and electrolyzer capacity
scale
ar
e
assumed
in the
simulation, as exemplied
by the
pr
esented
international
projects
within
the
ceramic
industry
.
V
ariables
surr
ounding
this
substitution
are
evaluated
with the
H2V
-IEPUC
model
(CNI, 2024).
The
tool
enables
a
sensitivity
analysis
useful
to
track
deterministic
scenarios
that
are
attractive
to
industry
companies,
according
to
technical,
economic,
and
environmental
metrics.
Therefor
e,
this
study
aims
to
track
conditioning
factors
that
enable
the
introduction
of
low-carbon
hydrogen
in
the ceramic
industry
,
within
the framework
of
a
Brazilian
company
,
repr
esenting
a
novelty
for
the
literature.
W
ithin
the
scope
of
assessing
the
feasibility
of
using
hydrogen
as
a
fuel
for
ceramic
processes,
the
objectives
of
this
paper
are
to
model
the
incremental
cash
ow
and
the
net
pr
esent
value
(NPV)
of
the
substitution
project,
within
the
Brazilian
company
technic-economic
framework;
to
quantify the
main partakes
in the
cost
of green
hydrogen
in
the
levelized
cost
metric
(LCOH)
as
well
as
revenues
associated
to
coproducts
(CO2
credits
and
O2);
and
consider
a
sensitivity
analysis
on
NPV
with
the
CAPEX
and
electricity
cost,
identied
as
key
parameters
to
be
combined
for
the
sake
of
the
project’
s
feasibility
.
The
modeling
and planning of partial substitution of natural gas
in
a
dedicated
branch
of
the
factory
allow
the
industrial
player
to
kick
o
an
initial
pilot
phase,
enabling
the intr
oduction
of gr
een
H₂ in
the
energy
matrix.
This
means
the adoption
of
a
project
with
a low technical risk, such as intermediate product
drying.
Depending
on
the
inter
nal
experience
gained
and
the
technical-operational
success
in
the H₂
usage, the
player
could expand
the system
rationally
,
either
by
safely
increasing
the
natural
gas
substitution in
existing
pr
ocesses
or by
extending
the H₂ use to other processes within the factory
.
84
2. METHODS
The
ceramic-industry
player
facilities
ar
e
located
in
Rio
Claro,
in
São
Paulo’
s
interior
,
Brazil
(Figure
1),
contributing
to
the
municipality’
s
status
as
the
largest
ceramics
production
center
in
the
Americas
and
r
epresenting
a
signicant
pr
oduction
scale
globally
.
This
allowed
the
study
case
to
consider
meaningful
production
scale
magnitudes
within
The
factory
has
a
dedicated
natural
gas
line
supplying
six
dryers,
each
consuming
an
average
of
3,450 Nm³/d of natural gas. An
electrolysis system
was
sized
to
replace
15%
of
the
fossil
fuel.
Given
an annual
factory operation of
8,000 hours (91.3%
operational
factor),
the
current
annual
consumption
of
6.9
million
m³
of
natural
gas
could
be
reduced
to
5.8 million
m³/yr
with the
use
of
H₂ (317
tons
of
H₂
per
year)
generated
by
a
2.5
MW
electrolyzer
(ENZE
CUMMINS,
2023).
The
simulation
of
physical
and
cash
ows
and
the
economic
analysis
for
the
fuel r
eplacement project
were conducted
using the
H2V
-IEPUC tool (CNI,
2024).
The
input
variables
ar
e
as
follows.
The
technical
variables
of
the
electrolyzer
were:
specic
electricity
Figure 1 –
Ceramic factory in São Paulo State, Brazil (left) and evaluated study case (right)
Source: elaborated by the authors with data fr
om Delta (2024).
the
ceramics
sector
.
In
the
factory
,
there
are
around
10
production
lines established
to
process
raw
materials
into
ceramic
pr
oducts
by
using
natural in kilns and dryers.
consumption
of
61.7
kWh/kg
H₂,
specic
water
consumption
of
16.92
l/kg,
coproduction
of
8
kg
of
O₂/kg
H₂,
and
an
annual
electrolyzer
stack
degradation
rate
of
1%
(Khan
et
al.,
2021).
The
main economic variables are listed in T
able 1.
85
T
able 1 –
Key input variables for the economical-nancial modeling
Sources: elaborated by the authors with data fr
om Khan et al. (2021) and Delta (2024).
The
electrolyzer
CAPEX
(1,452
USD/kW)
and
annual
OPEX
(5%
of
electrolyzer
CAPEX)
wer
e
adapted
from
Khan
et
al.
(2021).
Besides
the
electrolyzer
CAPEX,
50%
of
CAPEX
was
added
due
to
importation,
EPC
(engineering,
procur
ement,
and
construction)
activities,
and
contingencies.
The
electr
olyzer
pr
oject
was
simulated
over
20
years.
The
total
investment
(27
million
BRL)
was
allocated
in
the
rst
two
years,
with
80%
in
the
rst
year
.
Besides
the
annual
OPEX,
the
need
for
membrane
replacement
in
the
electrolyzer
(20%
of
electrolyzer CAPEX)
was
considered
after
75,000
hours
of
operation.
The
cost
of
water
for
the
electrolysis
was
assumed
to
be
0.6
BRL/m³.
The
annual
water
demand
of
5,600
m³
can
be
sourced
from
the
company’
s
water
resources,
representing
a
small
volume
and
low
environmental
impact
within
the
factory
operations
(Delta,
2024).
The
electricity
cost
of
300
BRL/MWh
was
considered
appropriate to the factory’
s circumstances. Figure
2
pictures
the
modeling
scheme
implemented
to
build the cash ow
.
For
the
incremental
cash
ow
assessment,
the
replaced
natural
gas
was
considered
an
avoided
cost
(revenue),
valued
at
4.30
BRL/
Nm³.
According
to
the
reduction
of
natural
gas
consumption
(emission
factor
of
56.15
gCO₂eq/
MJ)
(IPCC,
2014),
revenues
from
carbon
cr
edits
were valued at 250 BRL/t CO₂eq.
Given
the
proximity
of
hydrogen
production
to
its
nal
use,
the
O₂
produced
fr
om
electrolysis
was
considered
for
oxygen-enhanced
combustion
(OEC)
purposes
(CSN,
2020;
Wu
et
al.,
2010).
Therefor
e,
through
a
thermodynamic
analysis
focused
on
adiabatic
ame
temperatur
e
(Law
,
2010), aiming
at enriching
the
combustion air
with
O₂ concentrations
lower than 30%
v/v
,
a technical
potential
of
saving
0.47
m³
of
natural
gas/m³ of
O₂
produced
by
electrolysis
was
adopted
(Castiñeiras-
Filho, et al.,
2024). In this way
,
the appraisal of O₂
aggregates revenues
thr
ough
natural
gas
savings
and the generation of carbon credits.
After
entering
the
input
variables,
the
H2V
-IEPUC
tool
(CNI,
2024)
reports
many
relevant
outputs
inherent
to
the
simulated
incremental
cash
ow
.
The
main
output
variables
are
the
net
present
value
(NPV),
the
inter
nal
rate
of
return
(IRR),
the
levelized
cost of
hydr
ogen
(LCOH) and its
br
eak-down into
components,
and
the
competitiveness
price
of
natural
gas
that
equalizes
the
implementation
of
the
hydrogen
pr
oject
with
the
business
as
usual
case.
Figure
2
pictur
es
a
scheme
r
epresenting
how the
tools gather the
input variables and
build
up
the
cash
ows.
For
more
details
about
the
modeling
of
the
cash
ow
,
a
manual
is
pr
ovided
with the tool (CNI, 2024).
CAPE
Xelectrolyze
r
O&M
Residual value
CAPEX allocation
Natural gas cost
Carbon credits
7,
263 BRL/kW
5% a.a.
30% do CAPEX
electrolyzer
2 years, with 80% in the 1st ye
ar
4.30 BRL
/Nm3
250 BRL/t CO2
Other investments
Membrane replacement
Time horizon
Electricity cost
Wa
ter cost
50% of CAPEX
electrolyzer
20% of CAPEX
electrolyzer
20 yea
rs
300 BRL/MWh
0.6 BRL/m
3
86
Figure 2 –
Simplied scheme for estimating r
evenues and expenses in the modeling
Project expenses
Project r
evenues
Source: elaborated by the authors.
According
to
the
methodology
outlined
above,
a
technical
and
economic
analysis
was
conducted
for
two
scenarios:
a
base
(conservative)
scenario
that
ignor
es
the
potential
value
of
O₂;
and
a
promising
scenario
that
considers
O₂
appr
eciation.
It
is
important
to
highlight
that
the
latter
scenario
disregar
ds
costs
related
to
O₂
pr
ocessing
and
conditioning
fr
om
electr
olysis,
as
well
as
other
The
cash
ow
and
accumulated
cash
ow
of
the
base
and
promising
scenarios
are
presented
in
Figure
3.
The
base
scenario
demonstrates
the
economic
unfeasibility
of
the
project,
based
on
the
economic
assumptions
outlined
in
T
able
1.
A
major
issue
was
that
the
annual
costs
(O&M,
electricity
,
etc.)
consistently
exceeded
the
revenues
(natural
gas
avoided
cost
and
carbon
credits)
associated
with
the
partial
substitution
of
natural
gas
by
green
H₂.
Notably
,
in
year
11,
the
need
to
replace
the
electrolyzer
membrane
after
75,000
hours
of
operation
showed
up
as
a
relevant
cost,
further
impacting
the
economic
viability
of
the
project.
costs
associated
with
equipment
and
infrastructure
adaptations
needed
for
OEC
implementation.
In
addition
to the
deterministic
results
for
the
context
presented
in
this
methodology
,
a
sensitivity
analysis
of
the
NPV
was
performed
concer
ning
the
most
impactful
variables:
natural
gas
cost,
electricity cost, and electrolyzer CAPEX.
3. RESUL
TS AND DISCUSSION
3.1. Analysis of Incremental Cash Flow for the Base and Pr
omising Scenarios
Therefor
e,
the
base
scenario
is
unfeasible,
as
it
resulted in a
negative NPV of
-50 million BRL and
a strictly decreasing cash ow
.
On
the
other
hand,
the
promising
scenario
demonstrated
that
the
ability
to
valorize
the
O₂
produced
from
electr
olysis
enables
the
project’
s
accumulated
cash
ow
to
grow
,
reecting
the
generation
of
revenues
greater
than
the
operational
costs.
It
is
noteworthy
that
the
use
of
O₂
to
displace
0.47
m³
of gas/m³
of
O₂,
with
a natural
gas cost
of
4.30
BRL/m³, generates
a
value
of approximately
2.021
BRL/m³
of
O₂.
In
addition
to
this
revenue
87
Figure 3 –
Cash ow overview for the base scenario (above) and the pr
omising scenario (below)
Source: elaborated by the authors.
Figure
4
demonstrates
the
br
eakdown
of
the
Levelized
Cost
of
Hydrogen
(LCOH)
in
the
evaluated
scenarios,
as
well
as
the
cost
of
the
fossil
fuel
above
which the
use of
hydr
ogen becomes
competitive.
The
base
scenario
resulted
in
an
LCOH
of
5.56
USD/kg
of
H2.
The
main
components
were
the
cost
of
electricity
(3.85
USD/kg,
64%
of
costs)
and
the
CAPEX
of
the
electrolyzer
(1.47
USD/
kg,
24.5%
of
costs).
Therefore,
reducing
these
costs
is
relevant
to
make
the
electr
olysis
projects
viable
and
minimize
the
cost
of
the
hydrogen
produced.
Among
the
cost
reducers,
the
carbon
3.2. Levelized Cost of Hydrogen (LCOH) structur
e in the scenarios
from
fuel
savings,
an
additional
CO₂
emission
reduction
of
0.972
kgCO₂/m³
O₂
valued
at
250
BRL/t
CO₂
results
in
an
extra
revenue
of
0.243
BRL/m³
of
O₂.
This
potential
valuation
highlights
the
importance of
conducting R&D
to
explor
e
the
utilization
of
O₂
in
industrial
processes
or
even
to
seek its commercialization with thir
d parties.
Finally
,
although
Figur
e 3
shows
that the
scenario
appraising
O₂
seems
to
have
a
favorable
cash
ow
, its NPV was
equal to -0.822 million
BRL and
the
IRR
was
4.7.
From
an
objective
perspective,
even
the
valorization
of
O₂
is
not
sucient
to
approve
the
implementation
of
the
electrolysis
project;
however
,
the
feasibility
was
very
close
with regar
d to the
discount rate of 5%.
This result
demonstrates
that
access
to
low-interest
nancing
options,
crucial
for
stimulating
decarbonization
projects, could contribute to the adoption of
H₂ in
the ceramics sector
.
credits
contribute
to
a
r
eduction
of
0.34
USD/
kg
of
H2
produced.
Additionally
,
for
the
sake
of
the
economic
competitiveness
of
H2,
natural
gas
would
need
to
cost
8.55
BRL/m3
in
the
base
scenario,
nearly
double
the
cost
adopted
(4.30
BRL/m3),
demonstrating
the
unfeasibility
of
the
project.
88
Figure 4 –
LCOH for the base scenario (on the left) and pr
omising scenario (right), and
competitiveness cost of the fossil source.
Source: elaborated by the authors with the tool in CNI (2024)
In
the
promising
case,
the
O2
contributed
to
a
reduction
of
2.43
USD/kg
in
the
LCOH, in
addition
to
increasing
the
carbon
credit
revenue
to
a
total
of
0.63
USD/kg
of
H2.
Thus,
the
LCOH
in
the
promising
case
r
eached
2.84
USD/kg,
proposing
a
competitiveness
value
for
the
fossil
fuel
of
4.34
BRL/m3.
As
assessed
in
the
previous
section,
where
the
natural
gas
price
was
established
at
4.30
BRL/m3,
the
substitution
pr
oject
is
very
close
to
being
viable.
Therefor
e,
a
structural
increase
As
observed
in
the
LCOH
components,
the
relevant
costs are: the
cost of
the fossil
fuel, the electricity
cost,
and
the
electrolyzer
CAPEX.
Figures
5
and
6
show
the
NPV
sensitivity
to
variations
in
these
parameters for
the base
and promising
scenarios,
respectively
.
in
the
price
of
natural
gas
over
the
project’
s
time
horizon,
for
example,
can
tur
n
the
NPV
positive,
assuming
that
the
other
assumptions
in
T
able
1
remain constant.
3.3. Analysis of the sensitivity of the NPV to relevant economic variables
89
Figure 5 –
Sensitivity analysis of NPV in the base scenario (neglecting O2)
Figure 6 –
Sensitivity analysis of NPV in the pr
omising scenario (appraising O2)
Source: elaborated by the authors with the tool in CNI (2024)
Source: elaborated by the authors with the tool in CNI (2024)
Note: Other parameters are constant as in T
able 1. V
alues in green highlight scenarios where the
NPV is greater than zer
o.
Note: Other parameters are constant as in T
able 1. V
alues in green highlight scenarios where the
NPV is greater than zer
o.
90
The
base
scenario
shows
that
only
with
an
electricity
cost
between
60
and
120
BRL/MWh
would
be
possible
to
make
the
pr
oject
viable,
given
the
reference
price
for
natural
gas
of
4.30
BRL/m³.
If
the
cost
of
natural
gas
increases
by
50%,
an
electricity
cost
as
low
as
120
BRL/
MWh
would
be
necessary
to
achieve
economic
feasibility
,
for
example.
Regarding
the
electr
olyzer
CAPEX,
a
40%
cost
r
eduction
(i.e.,
4,358
BRL/
kW) would
only make the
project viable for
natural
gas prices as high as 7.74 BRL/m³.
In
the
promising
scenario,
the
contexts
that
make
the
decarbonization
project
viable
are
more
diverse.
An
electricity
cost
of
around
180
BRL/MWh
would
already
make
the
project
viable
even
if
the
cost
of
natural
gas
was
reduced
by
20%,
to
competitive
levels
as
low
as
3.44
BRL/
m³.
Regar
ding
the
electr
olyzer
CAPEX,
a
40%
reduction
of
it
would
also
favor
the
viability
of
the
project.
Thus,
the
sensitivity
analyses
highlight
that
the
accessibility
of
the
ceramics
industry
to
low
electricity
costs
is
essential
for
the
rational
introduction
of
green
H2
into
its
energy
matrix.
In
the
Brazilian
context,
the
industry
can
invest
in
distributed
or
self-generation
pr
ojects
with
renewable
energy
,
which
may
allow
access
to
mor
e
competitive
electricity
costs.
This
alternative
benets
either
the
electrolysis
project
or
other
industrial
operations,
besides
ensuring
a
renewable
energy
backing
for
the
H2
produced
and the electricity matrix of
the factory
. In addition
to
this
route,
the
factory
can
seek
negotiations
in
the free energy market so as to
achieve electricity
costs
in
accor
dance
with
the
scope
of
pr
oducing
H2 for decarbonization purposes.
W
ith
a
lesser
impact,
the
electrolyzer
cost
is
also
relevant.
Therefor
e,
it
is
emphasized
that
the
sector
can
seek
nancing
sour
ces
for
capital
goods
to
mitigate
the
CAPEX
burden,
based
on
the
decarbonization
goal
pursued
by
both
industrial
agents
and
government
bodies.
Proper
pr
oject
structuring
for
electrolysis,
with
the
support
of
existing
credit
lines,
may
be
a
more
appropriate
short-term
alter
native,
rather
than
waiting
for
the
eect
of
economies
of
scale
over
electrolysis
technology
.
Based
on
the
results
above,
the
sensitivity
analysis
of
the
NPV
with
the
costs
of
natural
gas
and
electricity
was
repr
oduced
for
the
base
and
promising
scenarios,
considering
an
electricity
cost
of
160
BRL/MWh
and
a
50%
r
eduction
in
the electrolyzer CAPEX (3,632
BRL/kW) as a
new
refer
ence
level.
It
is
important
to
note
that
these
refer
ences
are
supported
by
the
perspectives
of
the excess
supply of r
enewable electricity in
Brazil
(Brasil
Energia,
2024)
and
current
electrolyzer
cost
levels (BloombergNEF
, 2024).
Figure
7
shows
the
results
of
this
analysis,
demonstrating
that
the
reduction
in
these
two
variables
favors
the
project’
s
viability
.
In
the
new
refer
ence
case,
a
positive
NPV
of
1.0
million
BRL
was
found
for
the
base
scenario,
without
considering
the
value
of
O2.
In
the
context
of
an
increase
in
the
cost
of
natural
gas,
the
project
remains
viable.
In
the
promising
scenario,
which
takes
into
account
the
use
of O2,
the
NPV
of
the
new refer
ence is 50 million
BRL. Furthermor
e, the
project
remains
viable
even
with
highly
competitive
natural gas prices, as low as R$ 0.86/m3.
Finally
,
the
evaluated
scenario
supports
the
result
regar
ding
the
importance
of
low
electricity
costs
and
electrolyzer
CAPEX.
In
particular
,
the
consideration
of
the
value
of
O2
presents
a
relevant potential to mitigate the cost of hydr
ogen
production.
91
The
case
study
conducted
with
a
ceramics
industry
company
demonstrates
the
potential
for
hydrogen
production
at
costs
between
2.84
and
5.56
USD/kg
H2.
The
modeled
incremental
cash
ows
were
unattractive
and
misaligned
(NPV
lesser
than
0)
with
the
technical-economic
risk
in
the
current context established with
the company
.
By
breaking
down
the
LCOH,
the
main
contributors
identied
in
this
metric
composition
wer
e
the
CAPEX, electricity
cost, and O2
valuation. In
sum,
the hydrogen pr
oduction project for partial natural
gas
replacement
is
only
viable
if
the
potential
value
of
the
oxygen
(O2)
co-pr
oduced
in
electr
olysis
is
fully
exploited,
which
can
be
achieved
through
oxygen-enriched
combustion
(OEC)
or
commercialization
with
third
parties.
Besides,
the
sector
must
be
able
to
value
avoided
emissions
at
250
BRL/t
CO2.
However
,
since
the
analysis
does
not
account
for
O2
processing
costs
and
equipment
adaptation,
it
remains
essential
to
seek
Figure 7 –
Sensitivity analysis for the base scenario (top) and pr
omising scenario (bottom) under
the new refer
ence
Source: elaborated by the authors with the tool in CNI (2024)
Note: the new refer
ences are R$160/MWh for electricity cost and R$3,632/kW for the
electrolyzer CAPEX. Other parameters ar
e constant as in T
able 1. V
alues in green highlight that
the scenario results in a positive NPV
.
4. CONCLUSION
electricity
contracts
at
more
competitive
costs
or
to
pursue
well-structured
distributed
generation
or
self-production
projects
with
renewable
sources
to
facilitate
the
feasibility
of
the
project
in
the
long
term.
As
indicated
by
the
sensitivity
analysis,
combining
incentives
for the
electrolyzer
investments
(halving
the
CAPEX)
with
oxygen
appraisal
can
enable
the
decarbonization
project
with
electricity
prices
as
high
as
288
BRL/MWh.
Additionally
,
access
to
low-cost
credit
lines
could
be
provided
to
the
sector
as
a
way
to
achieve
decarbonization
goals
for
the
industry
. Overall,
the
ceramic industry company can
invest in the gr
een
hydrogen
project
with
reasonability
and
consider
it
an
eective
decarbonization
strategy
if
one
of
the
tracked
technical-economic
contexts
in
the
sensitivity analysis can be fullled.
It
is
further
emphasized
that
the
results
obtained
from
the
case
study
with
the
ceramics
industry
provide both
quantication
and
an
understanding
of
the
potential
value
for
other
industrial
subsectors
regar
ding
the
potential
for
green
hydrogen
to
enter
their
energy
matrices,
without
overlooking
the economic aspects within the energy transition
agenda.
The
critical
role
of
capital
costs
associated
with
electrolysis
technology
and
electricity
in
supporting
the
process
viability
is
highlighted,
as
well
as
the
importance
of
valuing
O2
r
ecovery
in
cases
where
the
hydrogen
produced
by
electrolysis
is
close
to
its
end-use,
as
shown
in
the
breakdown
of
the
LCOH.
Future
studies
in
this
area
can
be
expanded
to
other
industrial
sectors
and
applications
involving
hydr
ogen
or
derivative
products,
in
or
der
to
explore
technical
and economic viability scenarios and guide public
policies
towards
the
development
of
nancing
programs
or
tax
exemptions
for
decarbonization
projects.
5. REFERENCES
Assunção,
R.,
Ajeeb,
W
.,
Eckl,
F
.,
Gomes,
D.
M.,
&
Costa
Neto,
R.
(2025).
Decentralized
hydrogen-oxygen
co-
production
via
electrolysis
for
large
hospitals
with
integrated
hydrogen
refueling
station.
Inter
national
Jour
nal
of
Hydrogen Energy
, 103, 87-98. https://doi.org/10.1016/j.ijhydene.2025.01.169
BloombergNEF
(2024).
Electrolyzer
Costs
Have
Risen
Last
Y
ear
,
and
Glitches
in
T
echnology
Have
Given
a
Headache
to
Manufactur
ers
and
Pr
oject
Developers.
A
vailable
at:
https://www
.linkedin.com/posts/lokesh-t-58324966_
electrolyzer
-price-survey-2024-rising-costs-activity-7169669144840204288-tL2_/
Brasil Energia. (2024). Precicação horária e a geração elétrica híbrida. A
vailable at: https://brasilenergia.com.br/
energia/precicacao-horaria-e-a-geracao-eletrica-hibrida
Castiñeiras-Filho,
S.
L. P
., Pradelle,
F
.
A.
Y
., Almeida,
E. F
.
de, Assis,
G. F
.
C.,
Oliveira-Cardoso,
S.
de,
Frutuoso,
L.
F
. M., &
Fer
nández
y
, E.
(2024). T
echnical-economical valuation
of oxygen as
a bypr
oduct of
hydrogen pr
oduction
via water electrolysis. In ROG.e 2024 (p. 3883). IBP
. Boulevard Olímpico, Rio de Janeir
o, Brazil.
CCEE.
(2024).
Certicação
de
Hidrogênio.
https://www
.ccee.org.br/certicacao_de_energia#:~:text=Como%20
solicitar%20a%20Certica%C3%A7%C3%A3o%20de%20Hidrog%C3%AAnio
CNI.
(2024).
Avaliação
de
Pr
ojetos.
Available
at:
https://www
.portaldaindustria.com.br/cni/canais/industria-
sustentavel/temas-de-atuacao/energias-renovaveis/hidr
ogenio-sustentavel/#avaliacao-de-projetos
CSN.
(2020).
Climate
Action
Report.
Available
at:
https://www
.csn.com.br/quem-somos/sustentabilidade/
relatorios-2020/
Cummins.
(2023).
T
echnical
specications
of
electrolyzers
–
Cummins
ENZE.
Retrieved
February
2023,
from
https://en.cumminsenze.com/.
Delta
Cerâmica.
(2024).
T
echnical
discussion
on
the
implementation
of
green
hydrogen
in
ceramics
production
[Personal communication].
Empresa
de
Pesquisa
Energética
(EPE).
(2018).
Análise
de
eciência
energética
em
segmentos
industriais
selecionados:
Segmento
Cerâmica.
Available
at:
https://www
.epe.gov
.br/sites-pt/publicacoes-dados-abertos/
publicacoes/PublicacoesArquivos/publicacao-314/topico-407/PRODUTO%206_Vpublicacao.pdf
93
ENGIE.
Decarbonizing Heat
to
Reduce
Scope 1
Manufacturing
Emissions.
Available
at: https://www
.engieimpact.
com/insights/decarbonizing-heat-manufacturing
EPE.
(2024).
National
Energy
Balance
2024.
https://www
.epe.gov
.br/pt/publicacoes-dados-abertos/publicacoes/
balanco-energetico-nacional-2024
Iberdr
ola.
(2021).
Iberdrola
and
Porcelanosa
Address
First
Solution
to
Electrify
Ceramic
Coating
Manufacturing
by
Combining
Renewable Energies,
Green Hydrogen,
and
Heat Pump.
Available
at: https://www
.iberdrola.com/
sala-comunicacao/noticia/detalhe/iberdr
ola-empresa-porcelanosa-abor
dam-primeira-solucao-para-eletricar
-
fabricacao-revestimentos-ceramicos-combinando-energias-r
enovaveis-hidrogenio-verde-bomba-calor
IEA.
(2024).
Global
Hydrogen
Review
2024.
Available
at:
https://www
.iea.org/reports/global-hydr
ogen-review-2024
IPCC.
(2014).
IPCC assessment
report,
AR5,
WG3: Mitigation
of climate
change. https://www
.ipcc.ch/report/ar5/
wg3/
IRIS.
(2024).
IRIS
Cerâmica
Group
and
Edison
Next
for
H₂
factory:
the
rst
ceramics
plant
powered
by
gr
een
hydrogen
produced
on-site.
https://www
.irisceramicagroup.com/en/media/iris-ceramica-group-and-edison-
next-for
-h2-factory-the-rst-ceramics-plant-powered-by-gr
een-hydrogen-pr
oduced-on-site/
Khan,
M.
H.
A.,
et
al.
(2021).
Designing
Optimal
Integrated
Electricity
Supply
Congurations
for
Renewable
Hydrogen Generation in Australia. iScience, 24, 102539. https://doi.org/10.1016/j.isci.2021.102539
León, D., Amez,
I., Castells, B., Ortega,
M. F
.,
& Bolonio, D. (2024).
T
echno-economic
analysis of the production
of
synthetic
fuels
using
CO₂
generated
by
the
cement
industry
and
green
hydrogen.
International
Journal
of
Hydrogen Energy
, 80, 406-417. https://doi.org/10.1016/j.ijhydene.2024.07.138
Novaes,
L. da
R.,
Santos,
D.
S. dos,
Interlenghi,
S.
F
.,
Maia,
J.
G. S.
S.,
& T
eixeira, A.
M.
(2024).
T
echno-economic
assessment
of
a
power
-to-liquids
process
with
renewable
energy
and
dierent
sources
of
CO₂.
In
ROG.e
2024
(p.
3112).
IBP
.
Boulevard
Olímpico,
Rio
de
Janeiro,
Brasil.
Recuperado
de
https://biblioteca.ibp.org.br/pt-BR/
search/49560
Wu,
K.,
et
al.
(2010).
High-eciency
Combustion
of
Natural
Gas
with
21–30%
Oxygen-enriched
Air
.
Fuel,
89,
2455-2462. https://doi.org/10.1016/j.fuel.2010.02.002
95
Assessing Uruguay’
s gr
een hydr
ogen
potential: A compr
ehensive analysis
of electricity and hydr
ogen sector
optimization until 2050
Evaluación del potencial de hidrógeno ver
de en Uruguay:
Un análisis integral de la optimización de los sector
es de
electricidad e hidrógeno hasta el 2050
1.- T
echnical University of Munich , TUM School of Engineering and Design, Chair of Renewable and Sustainable Energy Systems
andrea.cadavid@tum.de
https://orcid.org/0000-0001-8941-6528
2.- Sidnei Cardoso, School of Business IAG PUC-Rio, sidnei.car
doso@phd.iag.puc-rio.br
, https://orcid.org/0000-0002-7212-6652
3.- Universidad de la República, Facultad de Ingeniería, Grupo Interdisciplinario Ingeniería Electr
oquímica
v
e
r
o
d
i
a
z
@
f
i
n
g
.
e
d
u
.
u
y
https://orcid.org/0000-0001-5335-6404
4.- T
echnical University of Munich , TUM School of Engineering and Design, Chair of Renewable and Sustainable Energy Systems
thomas.hamacher@tum.de
https://orcid.org/0000-0002-0387-8199
Andrea Cadavid Isaza
1
, Thushara Addanki
2
, V
erónica Díaz
3
,
Thomas Hamacher
4
Recibido: 15/11/2024 y Aceptado: 09/1/2025
96
97
Uruguay
se posiciona
como potencial
exportador
de hidrógeno
verde
y derivados,
según
lo
descrito en
la hoja
de ruta.
El objetivo
principal de este
estudio es explorar cómo
reacciona el sistema
eléctrico del
país a
los objetivos delineados
en la hoja
de ruta.
Otro objetivo
es analizar cómo
podría desarrollarse
el
sector
del
hidrógeno
verde
basado
en
el
precio
de
mercado
del
hidrógeno.
Se
propone
una
metodología
para
distribuir
los
costos
entre
ambos
sectores.
El
análisis
revela
que
cada
escenario
presenta
desarrollos
muy
diferentes de
los
sistemas
energéticos
en
Uruguay
.
Son
necesarias
expansiones
sustanciales
en
las
capacidades de
energía r
enovable, particularmente
fotovoltaica
y
eólica, para
apoyar una
economía
del
hidrógeno.
Los
escenarios
impulsados
por
el
mercado,
especialmente
con
precios
más
altos
del
hidrógeno,
muestran
aumentos
signicativos en
las
capacidades
de
los
electr
olizadores. La
viabilidad
económica
de
la
producción
de
hidrógeno
a
pr
ecios
más
altos
sugiere
que
las
exportaciones
de
hidrógeno podrían convertirse en un negocio rentable para Uruguay
.
Uruguay is setting out to become a leading exporter of green hydr
ogen and its derivatives, as described
by
the
hydrogen
roadmap.
The
primary
aim
of
this
study
is
to
explore
how
the
country’
s
electricity
system reacts to the goals outlined ther
e. Another aim is to analyze how the green hydrogen sector
could
develop based
on
the market
price
for
hydrogen.
A methodology
for
distributing the
costs
among
both
sectors
is
proposed.
The
analysis
reveals
that
very
dierent
pictures
are
painted
in
each
of
the
scenarios, leading
to completely
dierent developments of
the energy
systems in
Uruguay
,
substantial
expansions in renewable energy capacities, particularly photovoltaic and wind power
, are necessary to
support
a
hydrogen
economy
.
The
market-driven
scenarios,
especially
at
higher
hydrogen
prices, show
signicant scale-ups in electrolyzer capacities. The economic
viability of hydrogen pr
oduction
at higher
price points suggests that hydrogen exports could become a pr
otable venture for Uruguay
.
P
ALABRAS CLA
VE:
Hidrógeno,
Modelo
de
sistema
energético,
Optimización,
Coste
nivelado
de
la
electricidad, Coste nivelado del hidrógeno, Uruguay
.
KEYWORDS:
Hydrogen,
Energy
system
model,
Optimization,
Levelized
cost
of
electricity
,
Levelized
cost of hydrogen, Uruguay
.
Resumen
Abstract
98
1. INTRODUCTION
The incr
easing global focus
on gr
een hydrogen
as
an
essential
energy
carrier
reects
a
widespr
ead
commitment
to
decarbonizing
energy
systems,
particularly
in
sectors
where
direct
electrication is
impractical
(IRENA,
2022).
T
o
meet
the
temperature
goals set
by the
Paris Agr
eement (United
Nations,
2015),
achieving
signicant
emission
reductions
across
all
economic
sectors
is
essential.
This
requir
es
decarbonizing
energy
,
advancing
electrication,
increasing
the
shar
e
of
renewable
energies,
and
improving
energy
eciency
.
Green
hydrogen,
produced
from
renewable
sources
via
water
electrolysis,
stands
out
as
a
clean
energy
vector
(Kumar
&
Lim,
2022;
Stolten
&
Emonts,
2016)
with
a
high
energy-to-weight
ratio
(Chi
&
Y
u,
2018). Its production process, which relies on
solar
,
wind,
or hydroelectric power
,
positions it
as
an environmentally
friendly and sustainable option
(BP
,
2022;
Kumar
& Lim,
2022;
Sánchez Delgado,
2019).
W
ith
zero
greenhouse
gas
emissions,
green
hydrogen
holds
signicant
potential
as
a
substitute
for
fossil
fuels
(Kumar
&
Himabindu,
2019;
Laguna-
Bercer
o,
2012),
particularly
in
“hard-to-abate”
sectors. For example, Hydrogen can be utilized in
fuel
cells
to
regenerate
electricity
,
power
cellular
radio
bases
in
remote
locations,
or
drive
fuel
cell
electric vehicles, among other
applications. It also
has
the potential
to
replace natural
gas
in
various
heat-dependent
pr
ocesses.
Hydrogen
can
also
play
a
critical
role
in
reducing
ir
on
oxide
(iron
ore)
to
produce
iron
(Direct
Reduction
Iron,
or
DRI) and
steel,
eliminating
the
need
for
fossil
fuels
in
one
of
the
most
challenging
industrial
pr
ocesses
to
decarbonize.
Uruguay
,
with
its
advantageous
geographic
location
and
robust
renewable
energy
infrastructure,
is well-positioned to leverage gr
een
hydrogen
pr
oduction
for
export
and
to
foster
the
development
of
new
industries
(Inter
national
Energy
Agency
,
2019,
2022,
Appendix
A;
Ministerio
de
Industria,
Energía
y
Minería,
2023a).
The
country
has
formulated
its
strategy
,
embodied
by
the
“Gr
een
Hydrogen
Roadmap
in
Uruguay”(Ministerio
de
Industria,
Energía
y
Minería,
2023b),
to
cultivate
a
domestic
market
for
green hydr
ogen and position
itself as a prominent
exporter of this renewable energy
resour
ce. In the
Roadmap it
is r
ecognized that Uruguay’
s potential
for
renewable
energy
production
far
exceeds
the
future
needs
of
its
electricity
system.
Uruguay’
s
stability
,
transparent
legal
framework,
and
a
strong
reputation
for
honoring
contracts
and
commitments
make
it an
appealing destination
for
large-scale
projects
in
green
hydrogen
and
related
elds.
Uruguay
is
uniquely
positioned
to
combine
hydrogen
with
biogenic
carbon
dioxide
(CO2)
to
produce
green
methanol.
This
methanol
can
be
converted
into
synthetic
gasoline,
gas,
oil,
or
jet
fuel. Uruguay can
create
new energy sour
ces that
fully
replace
conventional
fossil
fuels
by
har
nessing
renewable
resour
ces
to
produce
green
hydrogen
and
utilizing
agro-industrial
waste.
In
the
short
term,
Uruguay aims
to
develop a
domestic
market
for
gr
een
hydrogen
and
its
derivatives,
focusing
on
heavy
and
long-distance
transportation
and
green
fertilizer
production.
The
national
hydrogen
roadmap
pr
ojects
that
the
costs
of
renewable
energy
in
Uruguay
by
2030
would
enable
gr
een
hydrogen
production
at
values
between
1.2
and
1.4
USD/kgH2
in
the
western
r
egion
and
between
1.3
and
1.5
USD/kgH2
in
the
eastern
region. These competitive
costs position Uruguay
as
a
strong
contender
in
the
export
market
for
hydrogen
derivatives.
In
the
long
term,
Uruguay
will
explore
the
potential
for
oshore
green
hydrogen
production to
further enhance
its export
capabilities
(Ministerio
de
Industria,
Energía
y
Minería, 2023b).
99
The
roadmap
is
not
the
rst
study
that
investigated
Uruguay’
s
hydrogen
potential
and
costs
for
producing hydr
ogen in the country
.
(Corengia
et
al.,
2020)
present
a
case
study
where
they
establish
a
simulation-based
sizing
of
grid-connected
electrolyzer
plants
for
the
case
of
Uruguay
.
Their
limiting
factor
is
the
available
surplus
electricity
from
the
grid;
the
only
service
that
the
electrolyzer
would
provide
to
the
electricity
system
is
peak
shaving.
They
concluded
that
the
produced
hydrogen
is
too
expensive
compared
to
traditional
fuels
and
that
the
utilization
of
the
electrolyzer plants is too low
.
(Corengia
&
T
orres,
2022)
propose
a
design
that
involves
selecting
power
sources,
electrolyzer
types
and
sizes,
and
energy
storage
devices
for
hydrogen
pr
oduction
in
Uruguay
at
various
scales.
The
study
highlights
solid
oxide
electr
olyzers
as
promising,
with
alkaline
electrolysis
preferred
over
proton
exchange
membrane
electrolysis
among
curr
ent
market
options. It
emphasizes the
importance of complementarity in
energy sour
ces
and
challenges
the
idea
of
producing
hydrogen
solely
to
use
energy
surplus
and
avoid
curtailment.
(Ibagon
et
al.,
2023)
developed
a
model
to
optimize
the
capacity
of
renewable
energy
facilities,
electrolyzers,
storage
systems,
and
hydrogen
transport
methods
to
minimize
hydr
ogen
costs
in
Uruguay
.
It
analyzed
the
impact
of
hydrogen
demand
scale
and
technological
maturity
(2022
vs.
2030)
on
production
costs
and
the
supply
chain.
For
medium
and
small
demands,
conversion,
processing,
transport,
and
storage
costs
are
similar
to
energy
costs.
For
larger
demands,
the
cost
of
renewable
energy
r
epresents
the
most
relevant
cost
and
pipelines
ar
e
the
most
cost-
eective
for
transporting
compr
essed
gas,
while
trucks
ar
e
preferr
ed
for
smaller
demands.
For
medium
demand,
longer
distances
favor
liquid
organic
hydrogen
carriers
by
truck,
and
shorter
distances
favor
trucks
for
compressed
gas.
The
study
predicts
that
advancements
in
technology
will
reduce
hydrogen
pr
oduction
costs
fr
om
3.5
USD/kg in 2022 to 2.3USD/kg by 2030.
1.1. Literature r
eview
The
study
from
(Bouzas
et
al.,
2024)
examines
hydrogen
production
costs
in
Uruguay
,
focusing
on
the
impact
of
various
techno-economic
parameters.
It highlights
that electricity costs
are a
major driver
of
hydr
ogen
production
costs,
especially
when
low
capacity
factors
make
electrolyzer
CAPEX
and
OPEX mor
e signicant.
W
ater
costs ar
e found
to
be
negligible.
The
Weighted
Average
Cost
of
Capital
(W
ACC)
also
has
a
substantial
inuence,
particularly
in
scenarios
with
lower
full
load
hours
where
electrolyzer
investment
costs
dominate.
Overall,
WACC
signicantly
impacts
investment-
based costs.
Previous
studies
on
hydrogen
production
in
Uruguay
have
focused
on
identifying
optimal
renewable
locations
and
estimating
production
and
transportation
costs
to
centers
like
Montevideo.
However
,
they
haven’t
explored
integration
with
the
existing
electricity
system,
interactions
with
current
infrastructure,
or the potential synergies
of
an
integrated
hydrogen
and
electricity
system.
This
paper
aims
to
address
these
gaps
by
assessing
how
hydrogen
production
can
be
integrated
with
the
electricity
system,
evaluating
infrastructure
interactions,
and
determining
incentives
for
expansion.
It
also
provides
the
levelized
costs
of
electricity
and
hydrogen
within
such
integrated
systems.
100
2. METHODOLOGY AND MODEL DESCRIPTION
This
study
employs
a
linear
programming
energy
system
optimization
model
called
urbs
(Dorfner
,
2016;
Dorfner
et
al.,
2019).
The
software
allows
the
optimization
of
multi-commodity
energy
systems.
It
incorporates
inter
-temporal
planning
to analyze
development pathways, consisting
of a
“perfect
foresight”
model,
which
means
all
future
variables
are
dened
from
the
beginning.
The
model
minimizes
the
total
costs
of
the
system,
all
while
fullling
the
given
commodity
demands.
For
further
information
about
the
mathematical
background
or
the
tool
in
general,
check
the
documentation
(Dorfner
,
2023).
The
model
in
this
study
encompasses
the
existing
Uruguayan
electrical
system
alongside
planned
expansions,
optimizing
the
system
expansion
and
operation
The
creation
of
the
energy
model
r
equires
the
creation
and
denition
of
dierent
input
data
and
parameters.
All
the
interactions
between
dierent
technologies
and
commodities
can
be
visualized
and
understood
through
a
reference
energy
system.
The
refer
ence system
for
this
case
can
be
seen in Figure 1.
In
the
case
of
Uruguay
,
there
are
dierent
available
technologies
to
generate
electricity
,
from
intermittent
or
non-conventional
renewable
energies, ther
e are
present
solar and
wind energy
,
to
be
mor
e
specic,
we
can
nd
the
following
technologies:
Open
eld
PV
,
Rooftop
PV
,
W
ind
onshore Level I,
Wind
Onshor
e Level
II, and
Wind
Oshore.
For each of them
we have a
determined
potential and
generation time series, the
specics
are
discussed
in
below
section
2.3.
All
of
these
have
a
temporal
generation
time
series
as
input,
and
their
output
is
electricity
.
More
traditional
renewable
energies
such
as
biomass
and
hydro
have
the
advantage
of
being
exible
when
they
generate
electricity
.
For
biomass,
yearly
energy
potential
is
the
limit.
For
hydro,
the
dam
can
be
used
to
store
the
water
coming
from
an
inow
time-
for
electricity
generation
and
hydrogen
production.
The
analysis
is
an
inter
-temporal
approach
that
spans
multiple
refer
ence
years,
including
2021,
2025,
2030,
2040,
and
2050,
providing
a
compr
ehensive
outlook
on
the
evolution
of
Uruguay’
s
electricity
and
hydrogen
landscape.
Uruguay
is
modeled
as
a
single
node
in
this
model, so the costs and
r
espective
energy losses
of
any
transmission or
distribution
lines
within
the
country ar
e not consider
ed. In
this section, we
will
examine
the
specic
assumptions,
models,
and
data utilized throughout the study
.
2.1. Reference Ener
gy System
series.
This
stor
ed
water
can
either
be
directed
to
its
powerplant
to
generate
electricity
or
be
spilled. The last technology available for electricity
production
is
the
Oil
plant,
which
consumes
oil
for
which
there
is
a
specic
cost
associated
and
generates
electricity
but
also
direct
CO2
emissions.
The domestic
demand
then consumes
electricity;
this
demand
has
to
be
fullled
every
single
hour
.
The
electricity
could
then
be
stored
in
batteries,
so
generation
can
be
shifted
in
time.
Electricity
is
also
an
input
for
hydrogen
production
using
electrolyzers. This produced hydr
ogen to fulll
the
specic
demand or
to
sell hydrogen for
a
specic
price.
The produced hydrogen
can be
stored in
a
compressed hydrogen storage
and then
r
eleased
for
use
at
another
time.
In
addition
to
storing,
there
is
the
possibility
of
curtailing
electricity
,
which
means
getting
rid
of
overproduction
when
this
is
the cost-optimal solution.
101
Uruguay
,
like
any
other
country
,
assumes
an
increase
in
its
economic
growth
and,
therefor
e,
its electricity consumption.
The Ministry of Energy
and
Mining
has
scenarios
and
projections
of
the
electricity
demand
of
the
national
interconnected
system
(SIN)
until
2040
(Ministerio
de
Industria,
Energía
y
Minería,
2018).
‘For
this
study
the
Baseline
scenario (“T
endencial”)
was used,
where
there
are
no
signicant
changes
in
the
demand
distribution
by
sector
from
2018
onwards.
The
gr
owth
rate
fr
om
the
last
years
was
then
2.2. Demands
Figure 1
Refer
ence Energy system for urbs model for Uruguay
T
able 1
. Y
early electricity demand of the National Interconnected System (SIN)
extrapolated
to
calculate
the
expected
demand
for
2050.
The
r
espective
values
can
be
seen
in
T
able 1.
Ye
ar
Ye
arly Electricity Demand [GWh]
2021
11,078
2025
12,190
2030
13,525
2040
16,7
47
2050
20,608
102
All
these
calculations
r
efer
to
the
total
yearly
electricity
demand.
The
hourly
prole
is
taken
from
the
electricity
market
operator
(ADME,
2024)
for
the
year
2021
is
used
as
a
base
to
disaggregate
future
yearly
demand
into
hourly
values.
In
the
case
of
hydrogen
demand,
the
r
oadmap
(Ministerio
de Industria,
Energía y
Minería,
2023b)
gives information in terms of electrolyzer capacity
,
market
size,
and
one
singular
value
for
the
yearly
production
of
2040
of
one
million
tons
H2,
corresponding
to
9
GW
of
electrolyzer
capacity
.
W
ith
this
last
value,
we
can
derive
that
for
each
GW of
electrolyzer
, they ar
e assuming
111.111 kg
of
hydrogen
a year
,
and this
ratio is
used for
all the
other
years.
Since
the
roadmap
goes
until
2040,
The
r
enewable
potential
analysis
is
carried
out
using
the
open-source
tool
pyGRET
A
(Kais
Siala
et
al.,
2022).
The
tool
performs
customizable
land
use
eligibility
analysis
based
on
38
dierent
criteria
(R
yberg
et
al.,
2018)
at
a
high
spatial
resolution
of
250m
x
250m
to
estimate
the
available locations and total potential of solar
and
onshor
e
wind technologies
of
a given
region.
The
tool
also
analyses
exclusive
economic
zones
up
until
a
seabed
depth
of
50m
to
calculate
the
xed
oshor
e
wind
potential.
In
addition
to
potential
calculation,
the
tool
also
r
eads
historical
weather
data
from
MERRA-2
(Global
Modeling
and
Assimilation
Oce
(GMAO),
2015b,
2015a)
and
Global
wind
atlas
(Global
Wind
Atlas
3.0,
2022)
to
calculate
the
hourly
capacity
factors
of
all
possible
locations.
The
detailed
methodology
is
described
in
sources
(Kais
Siala
et
al.,
2022)
and
(AUTHOR,
2024).
Figure
2
shows
the
results
of
this
analysis.
The
map
on
the
left
shows
the
locations
of
open
eld
and
roof
top
PV
potentials
and
the
map
on
the
right
shows
the
locations
of
but
the
time
scope
of
this
study
is
until
2050,
some
assumptions were requir
ed
to calculate
the
2050 value;
we went
for a conservative
appr
oach
of
an
electrolyzer
capacity
and
demand
increase
of 20%, which
r
esults
in 1.2 million tons for
2050.
The respective original and calculated electr
olyzer
capacities and demands can be seen in T
able 2.
T
able 2
. Specied electrolyzer capacities and estimated hydrogen demands. Based on:
(Ministerio de Industria, Energía y Minería, 2023b)
2.3. Renewable Potentials
onshore
and
oshore
wind
potentials
considered
in
the
energy
model
of
Uruguay
.
The
capacity
factors
for
solar
PV
technologies
are
very
similar
across
Uruguay as
it is
mostly latitude
dependent.
So,
the
total
potential
of 410
GW
for
Open
eld
PV
and
22
GW
of
Rooftop
PV
is
considered
to
have
the
same
hourly
capacity
factor
time
series.
For
wind
technologies, the
capacity factors
ar
e
highly
dependent
on
the
location’
s
geography
and
are
dierent
across
the
country
.
So
even
though
the
total
onshore
wind
potential
of
Uruguay
is
much
higher
,
only
the
highest
two
levels
of
locations
are
consider
ed
with
49.3%
and
46.5%
capacity
factors,
respectively
.
For
simplicity
within
the
model,
the
capacity
factor
of
54.2%
taken
from
an
average
location
is
assumed
for
the
oshore
region.
It
should
be
noted
that
the
capacity
factors
of
this
magnitude
for wind
technologies ar
e one
of
the
highest
in the
whole world,
which makes
them
cost-competitive
compar
ed
to
PV
technologies
despite
drastic
cost
reductions
projected
in
the
future for PV
. See below section 2.4.
Electrolyzer Capacity [G
W]
Hydrogen demand [kt
on H2/yea
r]
2025
0.1
11.11
2030
0.6
66.66
2040
9
1000
2050
10.8
1200
103
Figure 2.
Renewable Energy Potentials fr
om pyGRET
A for Uruguay
. Legend: T
echnology Potential
Y
early Capacity Factor
2.4. T
echnoeconomic Data
The
urbs
model
r
equires
various
techno-economic
data
inputs,
including
CAPEX
and
OPEX
for
all
technologies,
fuel
costs,
and
br
oader
economic
parameters
such
as
the
W
eighted
Average
Cost
of
Capital
(WACC)
and
discount
rates
for
long-
term
investments.
For
the
technology-specic
data,
we
intentionally
minimized
the
number
of
dierent
sources
used.
By
r
elying
on
a
limited
set
of
sources,
we
ensured
that
the
assumptions
and
methodologies
applied
across
technologies
are
consistent,
making
comparisons
between
them
fairer
and
uniform.
This
appr
oach
reduces
the
risk
of
discrepancies
that
could
arise
from
using
data
with
varying
underlying
assumptions,
thereby
enabling
a
more
balanced
evaluation
of
the
dierent
technologies.
Investment
and
operational
costs
vary signicantly
across
regions,
particularly Latin
America. T
o estimate
the
specic
costs for
Uruguay
, we
employed the
methodology
introduced
by
the
Inter
-American
Development
Bank
in
their
report
on
optimizing
the
Latin
American
electrical
system
(Inter
-American
Development Bank & Paredes, 2017).
104
T
able 3.
Sources for the Country and T
emporal-specic Input T
echno-economic data
This
approach
involves
r
ecalculating
investment
and
fuel
costs
for
each
country
in
the
r
egion,
by
using
specic
factors
per
technology
and
fuel.
In
our
case
we
use
Brazil
as
a
baseline
and
recalculated
the
factors.
For
all
technologies,
we
utilized
the
Net
Zero
2050
scenario
values,
using
Brazil
as
the
baseline.
The
only
exception
was
Rooftop
PV
,
for
which
we
selected
techno-
economic data from Eur
ope instead of Brazil, due
to
the signicantly
lower costs
r
eported
for Brazil.
According
to
market
reports,
such
as
the
recent
ones
from
Wood
Mackenzie
(Mackenzie,
2023,
2024),
the
current
range
for
rooftop
PV
in
Brazil
is
between
1200
to
1500
USD/kW
,
which
aligns
more
closely
with
the
European
starting
point
of
1120
USD/kW
in
2021.
The
T
able
3
summarizes
the
matching
of
dierent
data
sour
ces
used
to
create
the country-specic
and year
-specic
input
data.
As
previously
mentioned,
key
economic
parameters
still
need
to
be
dened.
Studies
by
(Steinbach
&
Staniaszek,
2015),
(Gar
cía-Gusano
et al., 2016), and the (OECD, 2021),
have
specically
examined
the
role
of
discount
rates
and
the
Weighted
Average
Cost
of
Capital
(WACC)
in
energy
system
models,
highlighting
their
inuence
on
long-term
investment
outcomes.
The
WACC
is
crucial
for
assessing
investments,
repr
esenting
the
cost
of
capital
in
a
region
and
sector
,
while
the
social
discount
rate
reects
the
time
value
of
money
and
opportunity
cost
of
capital.
Lower
discount
rates
favor
r
enewable
energy
, while higher
rates favor
fossil fuels.
Due to
economic
uncertainty
in
Latin
America,
adopting
a
default
WACC
is
inappropriate.
Therefor
e,
a
region-specic
WACC
for
Uruguay
was
dened
using an approach pr
oposed in the PTX Business
Opportunity
Analyser
tool
(Oeko-Institut,
2023),
where
country-specic
Equity
Risk
Premiums
(Damodaran,
2024)
are
used,
resulting
in
a
WACC
of
7.38%,
compared
to
the
5%
in
Uruguay’
s
Hydrogen
Roadmap.
The
W
ACC
will
be
applied
uniformly
across
all
timeframes
due
to
the
lack
of
a
reliable
projection
method.
The
study
also
adopted
an
average
social
discount
rate
of
3.894%
for
South
America,
based
on
recommendations
for
Latin American countries (Moore et al., 2020).
Te
chnology
P
ow
er plants
Electrolyzers
Ba
tt
eries
Hy
drogen S
to
ra
ge
105
Figure 3.
Methodology used for the cost distribution among the pr
oducts, commodities or sectors
T
o
calculate
the
levelized
cost
of
electricity
and
hydrogen,
we
consider
their
interr
elation,
as
the
electrical
infrastructur
e
is
aected
by
hydr
ogen
production.
Using
the
urbs
framework,
our
objective is
to minimize total
global costs for
both
electricity
generation
and
hydrogen
production.
T
o
be
able
to
assign
the
costs
between
these
two
products
we
will
use
a
methodology
and
approach
commonly
used
in
life
cycle
analysis
called
subdivision
and
complemented
by
allocation,
the
graphical
description
of
the
process
can
be
seen
in Figure 3.
Subdivision tries
to assign
inputs, ows,
or
, in
our
case,
costs
to the
singular
products. The
second
approach,
allocation,
distributes
the
eects
and
impacts
of
a
system
equitably
based
on
specic
characteristics
of
the
co-products.
For
the
subdivision
step,
the
investment,
x,
and
fuel
costs
to
produce
electricity
,
as
well
as
batteries
and
their
costs,
are
assigned
to
electricity
generation,
and
the
costs
only
related
to
hydrogen
such
as
costs
for
electrolyzers
and
H2-Storage
are
assigned
to
hydrogen
production.
For
the
allocation
step,
we
take
into
account that
the total
electricity that
gets
produced
is
used
as
a
dir
ect
electricity
demand
This
methodology
creates
a
relevant
and
adaptable
database for the region.
Based
on
the
techno-economic
data
discussed
in
this
section
and the
estimated
capacity
factors
for
dierent
r
enewables
from
above
section
2.3,
the
Levelized
cost
of
Electricity
from
Open-eld
PV
will
decrease
considerably
from
48
USD/MWh
in
2020 to
22 USD/MWh
in 2050.
For onshor
e wind,
the decrease is
fr
om 29-31
USD/MWh in
2020 to
only 25-27 USD/MWh in 2050. For oshor
e wind,
LCOE
decreases
fr
om
101
USD/MWh
in
2020
to
41 USD/MWh.
2.5. Levelized cost of Electricity and Hydrogen
and
also
used
in
the
electrolyzer
,
so
the
total
electricity
generation costs,
ar
e
allocated between
the
electricity
demand
and
hydrogen
production,
this costs
of the electricity
used for
H2 pr
oduction
get summed
to the costs
which were only related
to
H2
and
this
constitutes
our
total
hydrogen
costs.
This
method
ensures
a
fair
distribution
of
investment
and
operational
costs,
recognizing
that
higher
hydrogen
demand
requir
es
additional
investment
in
the
electrical
system
but
may
also
enable
greater
integration
of
low-cost
renewable
energies.
This
approach
is
suitable
because
our
model
optimizes
the
overall
system
costs,
ensuring
fair
cost
and
benet
assignment
given
the
interrelated
natur
e
of
electricity
and
hydrogen
production.
Elec Only Cost:
Powe
r plants, Storage
& Transmission
H2 Only costs:
Electrolyzers, Sto
rage
& Transport
To
tal
System
Costs
Subdivision
Elec Costs for
H2
Allocation
by energy
To
tal
Electricity
Costs
+
Elec Demand
Elec for H2
T
otal
Hydrogen
Costs
106
T
o
analyze
the
energy
model
and
system
optimization
for
hydrogen
production
and
electricity
generation
in
Uruguay
,
which
aims
to
produce
and
export
hydrogen,
three
distinct
scenarios were developed:
Baseline
Scenario
(Only
Electricity):
This
scenario
repr
esents
the
expected
evolution
of
the
energy
system
without
implementing
a
hydrogen
economy
.
It
serves
as
a
refer
ence
point,
illustrating
the
system’
s
behavior
under
current
policies
and
technologies
focused
solely
on
electricity
supply
.
The
model
simulates
the
current
trajectory
of
the
energy
system,
highlighting
potential
challenges
and
limitations
in
meeting
future
electricity
demands without hydrogen integration.
National
Hydrogen
Roadmap
Implementation
(H2
Roadmap):
This
scenario
models
the
implementation
of the
country’
s national
hydrogen
roadmap.
Specic
goals
for
hydrogen
pr
oduction
and
utilization
are
set
for
each
year
,
reecting
the
2.6. Scenario denition
government’
s strategic plan to
integrate hydr
ogen
into
the
national
energy
mix.
The
roadmap
includes
targets
for
hydrogen
pr
oduction
capacities,
and
infrastructure
development.
The
model
evaluates
the
roadmap’
s
targets,
assessing
the
required
capacities, investments, and resulting costs.
Market-Driven
Hydrogen
Production
(1
to
3
USD/kg
H2):
In
this
set
of
scenarios,
a
price
signal
for
hydr
ogen
is
introduced,
allowing
the
model
to
determine
the
optimal
production
and
export
quantities
based
on
pr
otability
.
The
model
assesses
whether
hydrogen
production
is
economically
viable
and
adjusts
the
production
levels
accordingly
.
V
arious
price
points
are
considered,
which
are
kept
constant
throughout
the
analysis
period
to
evaluate
their
impact
on
the
global
energy
system.
The
model
explores
the
economic
dynamics
of
hydrogen
production,
considering
various
price
signals
and
their
inuence
on production decisions and export potential.
3. RESUL
TS AND DISCUSSION
The
r
esults
show
notable
expansion
within
the
electricity
sector
,
driven
by
the
incr
eased
demand
necessitated
by
hydrogen
pr
oduction.
The
study
thor
oughly
evaluates
the
generation
matrix,
Hydrogen
pr
oduction
quantities,
and
their
corresponding
levelized
costs.
The
information
from
all
gures
can
also
be
found
in
the
supplementary material.
Figure 4.
Installed Capacities for electricity generation per scenario and year
.
107
Figure
4
illustrates
the
installed
capacities,
and
Figure
5
the
electricity
generation
and
consumption
per
scenario
and
year
.
In
the
only
electricity scenario,
ther
e
is minimal expansion
up
to
2025
and
2030,
with
the
only
changes
being
the
addition of
an already planned
biomass plant
and
the decommissioning
of the
oil plant. Hydr
opower
plants provide enough exibility to
meet electricity
needs
despite
lower
capacity
. By
2040, signicant
changes
occur
as
existing
renewable
energy
plants
end
their
life.
Photovoltaic
(PV)
capacity
increases
signicantly
by
2040
and
2050.
On
the
contrary
,
onshore
wind
capacity
will
decr
ease,
while
oshore
wind
will
see
new
installations
by
2050.
Regarding
electricity
generation
and
consumption,
in
all
scenarios,
the
year
2021
shows
minimal
In
the
hydrogen
r
oadmap
implementation
scenario,
the
installed
capacity
for
2021,
2025,
and
2030
mirrors
the
electricity-only
scenario,
with
existing
renewable
energies
and
planned
expansions
being
sucient
for
the
early
stages.
By
2040,
signicant
hydrogen
demand
and
depreciated
renewables
necessitate
substantial
Figure 5.
Electricity generation and consumption per scenario and year
.
dierences
in
technology
and
curtailment,
with
the
electricity
mix
remaining
relatively
stable.
Approximately
44%
of
electricity
comes
from
hydropower
,
50%
from
onshore
wind,
2.6%
from
biomass, and the remainder fr
om PV
. However
, at
least
11.8%
of
generated
electricity
is
curtailed in
2021.
In
the
electricity-only
scenario,
ther
e
are
no
signicant
changes
in
subsequent
years.
By
2040,
new
large-scale
renewables
are
not
expected
with
the
decommissioning
of
existing
renewable
energy
sources, so biomass must
pr
ovide around 5 TWh
of electricity
. In 2050,
with a larger expansion and
diversication
of
r
enewables,
biomass
returns
to
operating as a peak power plant.
expansion,
with
PV
,
onshore
wind,
and
oshore
wind
capacities
increasing
by
2040
and
2050.
This
scenario
requires
in
total
22.4
GW
of
renewables
by
2040,
exceeding
the
18
GW
new
RE
target
in
the
ocial
roadmap.
The
new
installations
contrast
sharply
with
the
existing
capacity
and
expected
evolution.
108
The
hydr
ogen
r
oadmap
scenario
is
quite
similar
to
the
electricity-only
scenario
in
2025
r
egarding
electricity
generation
and
consumption,
with
some
curtailment
replaced
by
hydrogen
production.
By
2030,
curtailment
is
fully
replaced
by
hydrogen
production,
and
biomass
plants
operate
supply
electricity
for
electrolyzer
.
In
2040
and
2050,
the
expansion
of
renewables,
supported
by
exibility
measures,
allows dir
ect
operation of
electrolyzers.
However
,
23%
of
electricity
is
curtailed
in
2040
and 29% in 2050.
For
the
market-driven
hydrogen
production
scenarios,
results
vary
widely
based
on
the
given
hydrogen
prices.
In
the
initial
years
(2021
and
2025),
installed
capacities
r
emain
similar
to
the
only
electricity
scenario,
except
for
the
3
USD/
kg
H2
scenario,
which
sees
additional
onshore
wind
by
2025.
By
2030,
higher
price
scenarios
(2.5
and
3
USD/kg
H2)
show
signicant
PV
and
onshore
wind
capacity
expansions.
Fr
om
2040
onwards,
scenarios
diverge
more.
The
1
USD/
kg
H2
remains
similar
to
the
electricity
scenario,
while the
2 USD/kg
H2 fully
exploits onshor
e wind
potential and
adds 75
GW of
PV by 2050.
Higher
price
scenarios
(2.5
and
3
USD/kg
H2)
achieve
maximum
potential
for
PV
and
wind
oshore
by
2050.
As
a
perspective,
the
T
able
4
shows
the
produced
hydr
ogen
per
year
and
scenario.
The
orders
of
magnitude
among
scenarios
are
not
comparable;
they
show
the
magnitude
of
the
possible
market
that
Uruguay
could
have
under
favorable
conditions.
In
lower
price
scenarios
(1
and
1.5
USD/kg
H2),
in
the
rst
years,
hydrogen
production
is
driven
by
the
full
utilization
of
existing
power
plants,
specically
the
biomass
plant.
In
2040,
the
increase
in
the
electricity
demand
Figure 6.
Electr
olyzer capacity through the years and scenarios
and
the
decommissioning
of
older
PV
and
wind
plants
will
lead
to
a
reduction
of
available
surplus
electricity
and,
therefore,
a
reduction
in
hydrogen
production
in
the
1
USD
scenario
and
a
slight
reduction
in
the
1.5
USD
scenario.
In
2050,
due
to
price
r
eductions,
it
is
worthwhile
to
further
expand
renewable
energies,
and
hydrogen
production will
incr
ease
again. Electric
generation
and
hydrogen
production
grow
signicantly
for
the
higher price scenarios
(2, 2.5, and 3 USD/kg
H2).
109
T
able 4.
Hydrogen production quantities in the dier
ent scenarios and years.
Some
curtailment
r
emains,
but
most
electricity
produced
is
used
for
hydrogen
production.
This
shift
means
that
electricity
demand
becomes
a
secondary
service,
with
the
primary
goal
being
hydrogen
production.
Accor
ding
to
our
model,
this
would
be
protable
for
the
country
,
but
the
actual
implications
for
infrastructure,
including
Regarding
the
hydr
ogen
pr
oduction
system,
Figure
6
shows
the
requir
ed
electrolyzer
capacity
expansion
across
dierent
scenarios.
The
roadmap
scenario
diers to
the
values
given in
the
ocial
hydrogen
r
oadmap,
for
2025
approximately
70 MW
of electr
olyzer ar
e r
equired, in comparison
to the 100
MW r
eported, in 2040 0.43
GW vs 0.6
GW
, in
2040 8.69
GW vs
9 GW
. These
dierences
can
be explained
by
the dier
ence
in
the utilization
of
the
electrolyzers;
here,
they
are
operated
for
more
hours,
so
for
the
same
hydrogen
demand,
you
requir
e
less
electrolyzer
capacity
.
In
the
Hydrogen
roadmap,
most
projects
are
assumed
as
o-grid
systems,
whether
they
are
fully
W
ind,
PV
or
PV+W
ind
operated,
and
therefore
with
lower utilization hours.
In
market
price
scenarios,
varying
hydrogen
prices
lead
to
dierent
scales
of
electrolyzer
capacity
expansion.
The
1
USD/kg
H2
scenario
maintains
modest growth with
ar
ound
290.6 MW of
alkaline
electricity and hydrogen transport, as well
as river
transport,
maritime,
and
port
infrastructure,
are
not considered.
electrolyzers
until
2040.
As
prices
increase,
signicant
expansions
occur
.
The
2
USD/kg
H2
scenario
reaches
about
27.2
GW
by
2040
and
118.5 GW by
2050. The 2.5 USD/kg H2
scenario
sees
even
more
growth,
with
capacities
reaching
around
113 GW by
2040 and 482.4
GW by
2050.
The
highest
price scenario
of 3
USD/kg H2
shows
exponential
growth,
achieving
around
320.9
GW
by
2040
and
503.8
GW
by
2050,
illustrating
potential
massive
scale-up
under
favorable
economic conditions.
T
echnological
changes
occur
over
time,
with
alkaline
electrolyzers
initially
dominant.
By
2040,
PEM
electrolyzers
become
competitive
due
to
increased
eciency
,
and
by
2050,
new
installations
are
about
80%
PEM
and
20%
alkaline
for scenarios with capacities above 2 GW
.
Regarding
the
installed
battery
capacity
and
power
,
the
Figur
e
7
shows
the
r
esults.
Battery
expansion
becomes
necessary
by
2030
in
all
110
scenarios,
with
hydro
dams
providing
exibility
until
then.
A
synergy
between
the
electrical
system
and
hydrogen
production
reduces
power
capacity
needs
in
scenarios
with
signicant
hydrogen
production.
Storage
capacity
is
notably
reduced
in
Figure 7.
Battery capacity and power accor
ding to the scenario and year
Another
technology
that
delivers
exibility
to
the
system
ar
e
hydrogen
tanks
for
H2
storage,
with
signicant
expansions
in
the
H2
r
oadmap
scenario.
By
2050,
hydrogen
tanks
are
about
50%
of installed
electrolyzer capacities
but below
7.5%
of
yearly
hydrogen
demand.
The
H2
roadmap
scenario r
equires hydr
ogen tanks due to constant
Figure
8
presents
the
LCOE
for
each
year
and
scenario;
it
shows
a
shift
from
operation
and
maintenance
cost-based
to
investment
cost-based
systems
due
to
renewable
energy
expansion.
LCOE
r
eacts
to
investment
decisions,
which
can
either
increase
or
decrease
it,
depending
on
the
utilization
of
new
capacity
,
as
seen
in
2025
in
the
dierent
scenarios.
In
the
“Only
electricity”
and
“H2
Roadmap”
scenarios,
LCOE
increases
because
the
new
biomass
plant
isn’
t
used,
while
in
other
scenarios,
it
reduces
overall
costs by
pr
oducing
useful electricity
.
Having huge
yearly
hydrogen
demand, necessitating
storage
to
shift
hydrogen
delivery
to
low
production
hours.
In
market
price
scenarios,
hydrogen
is
sold
directly
once
produced,
eliminating
the
need
for
production shifting.
the
H2 r
oadmap and
extreme
hydrogen
scenarios
(2, 2.5, and 3 USD/kg H2), especially by 2050.
3.1. LCOE
exible
hydrogen
pr
oduction
(scenarios
2,
2.5,
and 3
USD/kg H2)
decreases the
need for
battery
exibility
.
For
example,
in
the
“Only
electricity”
scenario,
batteries
account
for
about
6
USD/
MWh
in
LCOE
in
2040
and
2050.
The
LCOE
for
the
“Only
electricity”
scenario
tends
to
be
higher
due to the fact ther
e is no other sector or pr
oduct
to
share
them
with,
and
all
capacity
expansion
costs
ar
e
solely
to
electricity
.
This
means
that
integrating
and
expanding
the
system
based
on
hydrogen
market
prices
benets
the
country
and
electricity
consumers,
pr
omoting
r
enewable
111
Figure 8.
Levelized cost of electricity
, by cost categories. Inv: investment. PP: power plants. O&M:
Operation and maintenance, including fuel
3.2. LCOH
energy
expansion
and
lowering
LCOE.
The
only
exception
is
in
2030,
where
signicant
capacity
expansions
in
the 2.5
and 3
USD/kg H2
scenarios
cause
higher
LCOEs.
Despite
dier
ent
power
Figure
9
shows
the
LCOH
divided
into
dierent
cost categories for various scenarios and
years.
The
most
signicant
costs
in
the
LCOH
come
from
the
electricity
used
for
hydrogen
production,
making
LCOH
closely
related
to
LCOE
and
reecting
its
changes
over
time.
LCOH
also
depends
on
the
capacity
expansion
of
the
hydrogen
system,
including
electrolyzer
and
hydrogen
tank
capacities.
Due
to
the
modeling
assumptions
hydr
ogen
storage
is only
requir
ed
in
the
H2
roadmap
scenario,
adding
costs
in
2030,
2040,
and
2050
in
line
with
storage
costs
reported
in
the
roadmap
(Ministerio
de
Industria,
Energía
y
Minería, 2023b).
The
“H2
Roadmap”
scenario
indicates
that
a
scale
mismatch
in
the
early
years
(2025
and
2030)
can
cause
higher LCOH
due
to
underutilized
electricity
systems.
In
2040,
a
signicant
demand
incr
ease
leads
to
a
peak
in
costs
driven
by
storage
and
electrolyzer
investments.
In
the
1
and
1.5
USD
scenarios,
LCOHs
are
above
market
prices,
but
the
model
optimizes
total
costs
by
expanding
electrolyzers to
use
otherwise
curtailed
electricity
.
plant
expansions, LCOE
remains relatively stable,
indicating cost-optimal decisions.
This
results
in
higher
costs
in
2040
due
to
reduced
surplus
electricity
and
limited
infrastructure
use.
For
higher
price
scenarios
(2,
2.5,
and
3
USD),
LCOHs
are
below
market
prices,
leading
to
large
expansions
and
high
production
quantities.
Overall,
LCOHs
tend
to
decrease
over
time,
with
increases
during
expansion
years.
Despite
dierent
development
scenarios
for
Uruguay’
s
electricity
and hydrogen systems until
2050, LCOH remains
relatively homogeneous, following similar tr
ends.
112
Figure 9.
Levelized cost of hydr
ogen, by cost categories. Inv: investment. O&M: Operation and
maintenance, including fuel costs.
4. RESUL
TS AND DISCUSSION
This
work
pr
esents
a
methodology
for
assigning
and
distributing
costs
for
a
system
with
co-
production
of
two
or
mor
e
commodities;
this
methodology
can
be
applied
to
any
energy
system
that
analyzes
sector
coupling.
W
e
also
present
a
comprehensive
methodology
for
deriving
all
input
data,
such
as
demands,
year
-specic
and
country-specic
CAPEX
and
OPEX,
and
economic
factors,
such
as
WACC
and
discount
rates.
The
study
presents
dierent
scenarios
for
optimizing
Uruguay’
s
electricity
and
hydrogen
systems.
Each
scenario
demonstrates
distinct
pathways
for
the
evolution
of
the
energy
system,
highlighting
the
potential
impacts
of
integrating
hydrogen
production
on
installed
capacities,
electricity generation, and consumption patterns.
The
research
highlights
the
strategic
role
of
hydropower
and
the
necessity
of
battery
storage
in maintaining grid stability and
enhancing system
eciency
,
particularly
to
support
renewable
energy
expansions in photovoltaic and wind power
.
The
resear
ch
also
emphasizes
the
potential
economic
benets
of
the
hydr
ogen
r
oadmap,
including
reduced
electricity
costs
for
domestic
consumers
and
the
promotion
of
renewable
energy
sources
with
costs.
The
ndings
suggest
that,
under
favorable
market
conditions,
hydrogen
production
could
signicantly
contribute
to
Uruguay’
s
economy
,
positioning
the
country
as
a
major hydrogen exporter
.
Recommendations
for
policymakers
and
stakeholders
include
investing
in
renewable
energy
capacities
and
hydrogen
production,
storage,
and
transportation
infrastructure;
developing
robust
market
conditions
and
incentives
for
integrated
renewable
energy
investments
and
electrolyzer
capacities;
exploring
the
implications
for
river
,
maritime,
and
port
infrastructure
to
handle
hydrogen
transport
and
export;
and
investigating
advancements
in
electrolyzer
technologies
and
exibility
measures
to
enhance
system
eciency
and reduce costs.
In
conclusion,
this
study
provides
valuable
insights
into optimizing Uruguay’
s electricity and hydr
ogen
systems,
demonstrating
the
transformative
potential
of
integrating
hydrogen
production
into
the
national
energy
mix.
The
r
esearch
oers
a
roadmap
for
policymakers
and
stakeholders
to
navigate
the
energy
transition,
emphasizing
the
importance
of
strategic
planning,
infrastructure
investment,
and
supportive
policies
to
realize
the
full
potential
of
hydrogen
as
a
key
component
of
Uruguay’
s sustainable energy future.
113
5. ACKNOWLEDGMENTS
7. REFERENCES
The
authors
gratefully
acknowledge
the
support
of
the
German
Federal
Ministry
of
Education
and
Research
for
funding
this
resear
ch
under
the
URGE-H2
project.
The
author
appreciates
the
support
from CSIC-UdelaR, PEDECIBA, and ANII. Author is a r
esearcher at PEDECIBA/United Nations.
ADME. (2024). ADME. https://adme.com.uy/index.php
AUTHOR.
(2024).
Renewable
Energy
Potential
Analysis
in
Bavaria.
Chair
of
Renewable
and
Sustainable
Energy
Systems.
Bouzas, B., T
eliz, E., & AUTHOR.
(2024). Gr
een hydrogen pr
oduction in Uruguay: A techno-economic approach.
International Jour
nal of Chemical Reactor Engineering, 22(7), 783–795. https://doi.org/10.1515/ijcr
e-2024-0066
BP
. (2022). Statistical Review of World Energy 2022.
Chi, J., & Y
u, H. (2018). W
ater electrolysis based on r
enewable energy for hydrogen pr
oduction. Chinese Jour
nal
of Catalysis, 39(3), 390–394. https://doi.org/10.1016/S1872-2067(17)62949-8
Corengia, M.,
Estefan, N.,
&
T
orres, A.
I. (2020).
Analyzing
Hydr
ogen
Pr
oduction
Capacities to
Seize Renewable
Energy
Surplus.
In
Computer
Aided
Chemical
Engineering
(V
ol.
48,
pp.
1549–1554).
Elsevier
.
https://doi.
org/10.1016/B978-0-12-823377-1.50259-7
Corengia,
M.,
&
T
orres,
A.
I.
(2022).
Coupling
time
varying
power
sources
to
production
of
green-hydr
ogen:
A
superstructure
based
approach
for technology
selection
and
optimal design.
Chemical Engineering
Research
and
Design, 183, 235–249. https://doi.org/10.1016/j.cherd.2022.05.007
Damodaran,
A.
(2024).
Useful
Data
Sets.
https://pages.stern.nyu.edu/~adamodar/New_Home_Page/
dataarchived.html
Dorfner
, J. (2016). Open Sour
ce Modelling and Optimisation of
Energy Infrastructure
at Urban Scale [PhD Thesis,
T
echnische Universität München]. https://mediatum.ub.tum.de/1285570
Dorfner
,
J.
(2023,
July
18).
Urbs:
A
linear
optimisation
model
for
distributed
energy
systems—Urbs
1.0.0
documentation. https://urbs.readthedocs.io/en/latest/
Dorfner
,
J.,
Schönleber
,
K.,
Magdalena
Dorfner
,
sonercandas,
&
froehlie,
smuellr
,
dogauzrek,
WY
AUDI,
Leonhard-B,
lodersky
,
yunusozsahin,
adeeljsid,
Thomas
Zipperle,
Simon
Herzog,
kais-siala,
&
Okan
Akca.
(2019).
Urbs
(V
ersion
v1.0.1) [Python]. tum-ens/urbs. https://doi.org/10.5281/zenodo.3265960
EPRI.
(2023). Electrolysis
T
echno-Economic
Analysis (V
ersion
v2.2.0) [Computer
software]. https://lcri-tools.epri.
com/tea-electrolysis
García-Gusano,
D.,
Espegr
en,
K.,
Lind,
A.,
&
Kirkengen,
M.
(2016).
The
role
of
the
discount
rates
in
energy
systems
optimisation
models. Renewable
and Sustainable
Energy Reviews,
59, 56–72.
https://doi.org/10.1016/j.
rser
.2015.12.359
114
Global
Modeling
and
Assimilation
Oce
(GMAO).
(2015a).
MERRA-2
tavg1_2d_rad_Nx:
2d,
1-Hourly
,
Time-
Averaged,
Single-Level,
Assimilation,
Radiation
Diagnostics
V5.12.4.
Goddard
Earth
Sciences
Data
and
Information
Services Center (GES DISC). 10.5067/VJAFPLI1CSIV
Global
Modeling
and
Assimilation
Oce
(GMAO).
(2015b).
MERRA-2
tavg1_2d_slv_Nx:
2d,
1-Hourly
,
Time-
Averaged,
Single-Level,
Assimilation,
Single-Level
Diagnostics
V5.12.4.
Goddar
d
Earth
Sciences
Data
and
Information Services Center (GES DISC). https://doi.org/10.5067/VJAFPLI1CSIV
Global
W
ind
Atlas
3.0.
(2022).
Global
W
ind
Atlas
3.0,
a
Free,
Web-Based
Application
Developed,
Owned
and
Operated
by
the
T
echnical
University
of
Denmark
(DTU).
https://windenergy
.dtu.dk/english/news/
nyhed?id=3f952ab8-0be0-4ab5-8962-0b787f84503a
Ibagon,
N.,
Muñoz,
P
.,
AUTHOR,
T
eliz,
E.,
&
Correa,
G.
(2023).
T
echno-economic
analysis
for
o-grid
green
hydrogen
production in Uruguay
. Jour
nal of Energy Storage, 67, 107604. https://doi.org/10.1016/j.est.2023.107604
Inter
-American
Development
Bank,
&
Paredes,
J.
R.
(2017).
La
Red
del
Futuro:
Desarrollo
de
una
red
eléctrica
limpia y sostenible para América Latina. Inter
-American Development Bank. https://doi.org/10.18235/0000937
International
Energy
Agency
.
(2019).
The
Future
of
Hydrogen.
IEA.
https://iea.blob.core.windows.net/
assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydr
ogen.pdf
International
Energy
Agency
.
(2022).
World
Energy
Outlook
2022.
https://www
.iea.org/reports/world-energy-
outlook-2022
IRENA.
(2020).
Green
hydrogen
cost
reduction:
Scaling
up
electrolysers
to
meet
the
1.5C
climate
goal.
International
Renewable
Energy
Agency
.
https://www
.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_
Green_hydr
ogen_cost_2020.pdf
IRENA.
(2022).
Geopolitics of
the
Energy
T
ransformation:
The
Hydrogen Factor
.
International
Renewable
Energy
Agency
. https://www
.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-T
ransformation-Hydrogen
Kais
Siala,
Houssame
Houmy
,
Buchenberg,
P
.,
Thushara2020,
Lodersky
,
&
Sonercandas.
(2022).
tum-ens/
pyGRET
A:
Python
Generator
of
REnewable
Time
series
and
mAps
(V
ersion
v2.1)
(V
ersion
v2.1)
[Computer
software]. tum-ens. https://doi.org/10.5281/ZENODO.3727416
Kumar
, S., & Himabindu, V
. (2019). Hydrogen
production by
PEM water electr
olysis – A r
eview
. Materials Science
for Energy T
echnologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002
Kumar
,
S., &
Lim,
H. (2022).
An
overview of
water
electrolysis
technologies
for gr
een hydr
ogen pr
oduction. Energy
Reports, 8, 13793–13813. https://doi.org/10.1016/j.egyr
.2022.10.127
Laguna-Bercer
o,
M.
A.
(2012).
Recent
advances
in
high
temperature
electrolysis
using
solid
oxide
fuel
cells:
A
review
. Jour
nal of Power Sources, 203, 4–16. https://doi.org/10.1016/j.jpowsour
.2011.12.019
Mackenzie,
W
.
(2023,
April
3).
Latin
America
(LA
T
AM)
&
Canada
solar
PV
system
pricing
2023.
https://www
.woodmac.
com/reports/power
-markets-latin-america-latam-and-canada-solar
-pv-system-pricing-2023-150114048/
Mackenzie,
W
.
(2024,
March
1).
Latin
America
solar
PV
system
pricing
2024.
https://www
.woodmac.com/reports/
power
-markets-latin-america-solar
-pv-system-pricing-2024-150211127/
Ministerio
de
Industria,
Energía y
Minería.
(2018).
Estudio
de
Prospectiva
de
la Demanda
Energética
2018.
https://
www
.gub.uy/ministerio-industria-energia-mineria/comunicacion/publicaciones/estudio-prospectiva-demanda-
energetica-2018
115
Ministerio
de
Industria,
Energía
y
Minería.
(2023a).
BEN
Balance Energético
Nacional.
https://ben.miem.gub.uy/
balance.php
Ministerio
de
Industria,
Energía
y
Minería.
(2023b).
Uruguay’
s
Roadmap
for
Green
Hydrogen
and
Derivatives.
https://www
.gub.uy/ministerio-industria-energia-mineria/comunicacion/noticias/hoja-ruta-hidrogeno-ver
de-
uruguay-version-nal
Moore,
M.
A.,
Boar
dman,
A.
E.,
&
Vining,
A.
R.
(2020).
Social
Discount
Rates
for
Seventeen
Latin
American
Countries:
Theory
and
Parameter
Estimation.
Public
Finance
Review
,
48(1),
43–71.
https://doi.
org/10.1177/1091142119890369
NREL
(National
Renewable
Energy
Laboratory).
(2023).
2023
Annual
T
echnology
Baseline.
National
Renewable
Energy Laboratory
. https://atb.nrel.gov/
OECD.
(2021).
Assessment
of
a
social
discount
rate
and
nancial
hurdle
rates
for
energy
system
modelling
in
Viet
Nam
(OECD
Environment
W
orking
Papers
181;
OECD
Environment
W
orking
Papers,
V
ol.
181).
https://doi.
org/10.1787/a4f9a3-en
Oeko-Institut.
(2023).
PTX
Business
Opportunity
Analyser
(BOA):
Data
Documentation.
Documentation
of
data
sources and data pr
ocessing, version 1.0. Commissioned by Agora Energiewende and Agora Industry
.
Ryberg,
D.
S.,
Robinius,
M.,
&
Stolten,
D.
(2018).
Evaluating
Land
Eligibility
Constraints
of
Renewable
Energy
Sources in Eur
ope. Energies, 11. https://doi.org/10.3390/en11051246
Sánchez Delgado, M. (2019). Desarrollo y validación de
un modelo para la simulación de sistemas de
electrólisis
alcalina
para la
producción
de
hidrógeno
a partir
de
energías r
enovables
[Phd, E.T
.S.I de
Minas
y Energía].
https://
oa.upm.es/62567/
Steinbach, J., & Staniaszek, D. (2015). Discount rates in energy system analysis—Discussion Paper
.
Stolten,
D.,
&
Emonts,
B.
(2016).
Hydrogen
science
and
engineering,
2
volume
set:
Materials,
processes,
systems,
and technology (V
ol. 1). John W
iley & Sons.
United
Nations.
(2015).
The
Paris
Agreement
|
UNFCCC.
https://unfccc.int/process-and-meetings/the-paris-
agreement
W
ang,
Y
.,
Kowal,
J.,
Leuthold,
M.,
&
Sauer
,
D.
U.
(2012).
Storage
System
of
Renewable
Energy
Generated
Hydrogen for Chemical Industry
. Energy Procedia, 29, 657–667. https://doi.org/10.1016/j.egypr
o.2012.09.076
117
Solar ener
gy time series analysis via
markov chains
1.- mbemveiga@gmail.com
2.- gabrielsigaud@gmail.com
3.- Industrial Engineering Department Pontical Catholic University of Rio de Janeiro
cyrino@puc-rio.br
ORCID: 0000-0003-1870-9440
4.- Industrial Engineering Department Pontical Catholic University of Rio de Janeiro
gustavo.melo.rio@gmail.com
Marianne Bechara Elabras da Motta V
eiga
1
, Gabriel Kelab Sigaud
2
, Fernando Luiz Cyrino Oliveira
3
,
Gustavo de Andrade Melo
4
Recibido: 18/11/2024 y Aceptado: 04/2/2025
118
119
Brasil,
ante
un
escenario
global
de
preocupación
por
el
cambio
climático,
viene
incrementando
el
uso
de
energías
renovables,
especialmente
la
energía
solar
en
los
últimos
años.
Con
el
crecimiento
de
su
participación,
las
características
de
la
energía
solar
,
como
la
intermitencia
y
las
uctuaciones
aleatorias,
vienen afectando
la
planicación de
la
operación
del
Sistema Eléctrico
Brasileño
(SBE). T
ales
factores
pueden
ser estudiados
con
modelos
de
series de
tiempo,
auxiliando
la
planicación de
plantas
generadoras
y
SBE.
Con
el
n
de
contribuir
al
análisis
factorial,
el
objetivo
de
esta
investigación
es
analizar
las
características
de
la
generación
de
energía
fotovoltaica
en
las
estaciones
meteorológicas
del
año en
dos regiones de
Brasil con diferentes incidencias
solar
es. Para
ello, se
aplica una metodología
basada
en
conceptos
de
Cadenas
de
Markov
para
dos
series
de
tiempo
estacionarias.
El
trabajo
se
destaca por la
subdivisión de las
series de tiempo entre las estaciones
climáticas, por el
uso de datos
aún
no
estudiados
y
por
la
presentación
de
la
metodología
y
resultados
en
detalle.
El
objetivo
de
la
investigación
fue alcanzado
con
éxito, evidenciando
las
diferencias
entre
los modelos
de
generación
de
energía solar entre las estaciones meteor
ológicas y las dos regiones estudiadas.
Brazil, given a global scenario of concern with climate change, has been increasing the use of renewable
energy
, especially solar energy in the last years. W
ith the gr
owth in its participation, the characteristics of
solar
energy
,
such
as
intermittence
and
random
uctuations,
have
been
aecting
the
operation
planning
of the Brazilian Electricity System (BES). Such factors can be studied with time series modeling, helping
the planning of power plants and BES. In order to contribute to the factor analysis, the objective of
this resear
ch is to analyze the characteristics of photovoltaic energy generation in the meteorological
seasons
of
the
year
in
two
regions
of
Brazil
with
dierent
solar
incidences.
For
this,
a
methodology
based on Markov Chain concepts is
applied for two stationary time series. The
work stands out for the
subdivision of the time series between the climatic seasons, for the use of data not yet studied and for
the
presentation
of
the
methodology
and
results
in
detail.
The
objective
of
the
resear
ch
was
successfully
achieved,
making
evident
the
dierences
between
the
solar
energy
generation
models
between
the
meteorological seasons and the two r
egions studied.
P
ALABRAS CLA
VE:
Fuentes
de
Energía
Renovable,
Fuentes
de
Energía
V
ariables,
Energía
Solar
,
Estaciones Climáticas, Cadenas de Markov
, K-means
KEYWORDS:
Renewable
Energy Sources,
V
ariable
Energy Sources,
Solar
Energy
,
Climatic
Seasons,
Markov Chains, K-means
Resumen
Abstract
120
1. INTRODUCTION
Faced
with
a
scenario
of
concer
n
about
climate
change,
countries
are
carrying
out
the
energy
transition,
thus
moving
away
from
using
fossil
energy
sources
and
increasing
the
use
of
renewable
sources
(Malar
,
2022).
Accor
ding
to
the
Inter
national
Renewable
Energy
Agency
(2023),
the
planet
had
an
increase
in
r
enewable
energy
capacity
in
2022
of
13%
compared
to
the
previous
year
.
Renewable
energies
ar
e
considered
inexhaustible,
as
they
can
always
be
renewed
by
natur
e,
and
generate
considerably
lower
envir
onmental
impacts
than
non-r
enewable
energies (EPE, 2022).
Brazil
has
been
following
this
transformation
in
the
world’
s
energy
matrix.
Accor
ding
to
the
2023
National
Energy
Balance,
47.4%
of
Brazil’
s
domestic
energy
supply
in
2022
came
from
renewable sources. In
2013,
this percentage was
40.6%,
that
is,
in
9
years,
there
was
an incr
ease
of
approximately 17% (EPE, 2023).
In
this
context,
solar
energy
is
a
source
that
deserves
to
be highlighted.
In
2022,
it
accounted
for
3.6%
of
the
domestic
energy
supply
in
Brazil.
In
addition,
between
2021
and
2022,
it
had
an
82.4%
growth
in
installed
capacity
,
being
the
fastest
growing
in
the
country
(EPE,
2023).
With
the increase in its
use in Brazil,
its characteristics,
such
as
intermittency
and
random
uctuations,
will
aect even more the country’
s energy
generation.
Solar
energy
is
generated
from
solar
radiation,
captured
by
photovoltaic
panels.
In
addition
to
being
renewable,
it
has
the
advantages
of
being
silent,
requiring
little
maintenance
and
being
able
to
be installed
in a
short time
(Imho,
2007). W
ith
the increase in its
use in Brazil,
its characteristics,
such
as
intermittency
and
random
uctuations,
will
increasingly
aect
the
country’
s
energy
generation.
Considering
this
scenario,
the
use
of
time
series
modeling
and
simulation
methods
to
study
this
impact
is
important
for
the
planning
of
the plants and the BES.
In
order to
contribute
to
this
theme,
the
objective
of
this
work
is
to
analyze
the
characteristics
of
photovoltaic
energy
generation
in
dierent
climatic
seasons
(summer
,
autumn,
winter
and
spring)
in
two
r
egions
of
Brazil
with
dier
ent
solar
incidences.
For
this,
the
time
series
discretization
approach
was used
for
Markov Chain
modeling, a
methodology
already
widely
used
in
the
literature
for
the
analysis
of
electric
energy
time
series.
Furthermore,
the
subdivision
by
climatic
season
diers
from
other
studies
because
it
is
based
on
a
natural
phenomenon,
as
opposed
to
monthly
subdivisions,
which
are
more
frequently
used,
for
example.
It
is worth
noting that
this
study presents relevant
dierentials
in
the
literature.
In
the
rst
place,
to
the
authors’
knowledge,
data
that
have
not
yet
been
studied
are used.
Also,
these
data
are
from
two
plants
located
in
regions
with
considerably
dierent
characteristics
and
wer
e
divided
by
the
climatic
seasons
of
the
year
,
which
allowed
both
geographical and temporal comparisons.
The
analysis
presented
in
the
study
was
carried
out
thr
ough
two
daily
photovoltaic
energy
generation databases fr
om ONS (National Electric
System Operator): Nova Olinda Complex, located
in
Piauí
(PI)
and founded
in
2017
(G1,
2017);
and
Guaimbê
Complex,
located
in
the
state
of
São
Paulo
(SP)
and
inaugurated
in
2019
(G1,
2019).
According
to Gadelha
de Lima
(2020), the
state of
Piauí
has
dierent
meteorological
characteristics
depending on
the quarter
of the
year
, which could
justify a division into four seasons.
Figure
1
shows
the
location
of
the
two
plants
on
the
brazilian
solarimetric
map.
This
map
is
an
adaptation
of
the
one
presented
in
the
Brazilian
Atlas
of
Solar
Energy
(Pereira
et
al.,
2017)
and
shows
the
annual average
of the
total daily
normal
direct
irradiation
over
Brazil.
It
is
possible
to
perceive
the
dierence
in
the
averages
of
direct
irradiation
between
the
two
locations
of
the
plants,
which
is
greater
in
the
Nova
Olinda
Complex
(Ribeira
do
Piauí
–
PI)
in
relation
to
the
Guaimbê
Complex (Guaimbê – SP).
121
2. THEORETICAL FRAMEWORK
The
applied
methodology
is
exploratory
and
can
be
divided into
three
main
phases. The
rst
relates
to
data
pre-processing,
including
data
collection,
analysis,
and
treatment.
In
the
second
phase,
data
processing
is
performed,
involving
modeling
via
Markov
Chains
and
obtaining
results
such
as
stationary
distribution,
recurr
ence
time,
and
In
the
literature,
there
are
several
r
enewable
energy
modeling
studies
that
apply
the
concept
of Markov Chains in their methodologies. Sigauke
and
Chikobvu
(2017)
performed
an
analysis
of
daily
peaks
of electricity
demand
through
Markov
Chains,
seeking
to
nd
the
stationary
distribution
(distribution
of
states
in
which
the
chain
will
stabilize).
T
o
do
this,
the
authors
used
demand
data
from
South
Africa
fr
om
2000
to
2011.
Models
with
two
states
were
consider
ed,
being
the
positive
or
negative
variations
between
the
days,
and
with
three
states,
where
the
dierence
Figure 1 -
Brazilian Solarimetric Map - A
verage annual normal direct irradiation.
Source: Adapted fr
om Pereira et al. (2017).
rst
passage
time.
In
the
last
phase,
data
post-
processing,
the
r
esults
obtained
were
analyzed
for comparison
between the climatic
seasons and
between the plants.
between
small
and
large
positive
variations
was
considered.
Maçaira
et
al.
(2019),
faced
with
a
scenario
of
increased wind
energy
use
in
Brazil,
showed that
the
dispatch
model
used
in
the
period
of
their
resear
ch
did not consider the stochastic behavior
of
this
energy
source.
The
model,
which
sought
to
optimize
long-term
energy
planning,
only
evaluated the
future
aspects of
water and thermal
sources.
In
view
of
this,
the
work
proposed
the
wind-hydrothermal
dispatch
model,
which
122
A
methodology
based
on
Markov
Chains
was
applied
to
modeling the
time
series
of
photovoltaic
solar
power
generation.
Figure
2
shows
the
owchart
with
the
main
stages
of
the
methodology
,
3. METHODOLOGY
divided
into
the
data’
s
pre-pr
ocessing,
processing,
and post-processing phases.
Figure 2 -
Main steps of the methodology
.
incorporated
wind
power
generation
using
the
MCMC
(Markov-Chain
Monte
Carlo)
method
to
simulate energy scenarios.
Ma
et
al.
(2020)
pr
oposed
a
methodology
for
aggregating
solar
photovoltaic
time
series
data
through
clustering
via
k-means,
Markov
Chains,
and
Monte
Carlo
simulation.
For
the
authors,
Markovian
processes
eciently
repr
esent
the
transitions
of
photovoltaic
power
generation
time
series.
Based
on
the
proposed
k-means-MCMC
methodology
,
initially
,
the
power
generation
data
should
be
grouped
following
the
optimal
number
of
clusters,
and
then
the
transition
matrix
should
be
assembled.
Finally
,
from
this
matrix,
energy
scenarios are generated via simulation.
Melo
(2022)
sought
to
show
the
spatial
and
temporal
complementarity
between
variable
renewable
energies
through
the
joint
stochastic
modeling
and simulation
of solar
and wind
energy
.
T
o
this
end,
it
used
two
methodologies
and
performs
three
applications,
thr
ough
databases
of
mills
located
in
the
Northeast
of
Brazil.
Both
methodologies
use
Markov
Chain
modeling,
Monte
Carlo
simulation
to
obtain
scenarios,
and
the
k-means
technique
to perform
data
clustering.
123
The
pr
e-processing
phase
consists
of
obtaining,
analyzing,
and treating
data.
The data
of
the
time
series
of
daily
photovoltaic
energy
generation
of
the
Nova
Olinda
(Piauí)
and
Guaimbê
(São
Paulo)
complexes
were
obtained
from
the
National
Electric
System
Operator
(ONS,
2022)
for
a
period
of
four
years,
from
06/21/2018
to
06/20/2022,
with
a
total
of
1,461
observations
for
each
complex.
The
only
two
variables
used
were
date
and
energy
generation.
Accor
ding
to
Ma et
al.
(2020),
due
to
the
characteristics
of
photovoltaic
power
generation
data,
the
optimal
time
scale
to
fragment
scenarios
would
be
daily
.
The
methodology
is
applied
rst to
the Nova
Olinda Complex
and then
to
the
Guaimbê
Complex,
so
the
two
series
are
worked separately in the modeling.
A
preliminary
analysis
of
the
data
obtained
from
energy
generation
during
the
period
was
performed.
First,
to
test
the
stationarity
of
the
time
series
over
the
four
years,
Augmented
Dickey-Fuller
(ADF)
unit
root
tests
were
carried
out.
The
null
hypothesis
of
the
ADF
test
is
that
there
are
unit
roots
in
the
time
series
and,
therefor
e,
it
would
not
be
stationary
(Dickey
,
D.;
Fuller
,
1979).
The
stationarity
test
is
essential
for
3.1. Pre-pr
ocessing
3.2. Processing
the
application
of
the
Markov
Chain
concepts,
because
a
non-stationary
series
depends
on
time,
and
in
Markovian
pr
ocesses,
the
probabilities
of
transition
to
the
next
state
depend
only
on
the
current
state
(Norris,
1998).
Furthermore,
non-
stationarity
would
mean
a
change
in
the
installed
capacity of the plants.
T
o
complete
the
pre-processing
phase,
a
treatment
of
the
databases
is
carried
out
so
that
the
time
series
can
be
modeled
as
Markov
Chains.
First,
the
null
or
missing
values
were
replaced
by
the
averages
of
the
month
in
the
corresponding
year
,
as
it
is
an
adequate
estimate
for
the
value
of
generation
in
the
period,
given
seasonality
.
Then,
so
that
the
time
series
could
be
analyzed
by climatic
season, they wer
e subdivided into
four
subsets: Summer
, Autumn, W
inter
, and Spring.
In
order
to
group
the
observations
with
greater
similarities,
the
subsets
of
the
solar
energy
generation
time
series,
divided
by
climatic
season,
were
discr
etized
into
markovian
states
independently
.
The
clustering
method
used
was
k-means
(MacQueen,
1967),
as
it
is
easily
programmable
and
computationally
economical.
In
the
k-means
method,
a
number
k
of
clusters
is
pre-specied,
and
initial
k
centroids
(average
value
of
clusters)
ar
e
dened
based
on
a
random
variable. Then, the
following steps are performed:
Observations ar
e assigned to
the near
est centr
oid
cluster
by
calculating
the
distance
fr
om
each
observation
to
each
centroid;
New
k
centroids
are
calculated
from
the
average
of
intra-cluster
observations;
Iterations
of
steps
1
and
2
are
3.2.1 Series discretization via k-means
performed until
the centroid
values do
not change
further
The
method
can
be
summarized
by
the
objective function (1).
However
,
to
apply
the
k-means
method,
it
is
necessary
to pre-dene the
number k
of clusters.
According
to
Fritz
et
al.
(2020),
choosing
the
wrong
values
for
k
can
lead
to
poor
results,
124
and
to
choose
the
ideal
number
of
clusters,
it
is
common
to
use
the
elbow
method,
rst
discussed
by
Thorndike
(1953).
As
the
number
of
clusters
increases,
the
sum
of
the
squared
error
of
the
distance
between
the
observations
and
the
centroids
tends
to
decr
ease
(Thorndike,
1953).
Hence,
the elbow
method
helps to
limit
the
choice
of
very
high
values
for
k,
in
which
there
are
no
relevant
benets
with
the
addition
of
a
new
cluster
.
The
elbow
method
can
be
used
in
conjunction
with
the
k-means
method
to
nd
the
optimal
number
of
clusters (Fritz et al., 2020).
T
o
apply
the
elbow
method
using
k-means,
it
is
rst
necessary
to
perform
the
k-means
steps
for
each
k-value
up
to
a
chosen
maximum
number
.
Then,
the
sum
of
the
intra-cluster
squared
error
,
or
Within-Cluster
-Sum
of
Squared
Errors
(WSS),
is
calculated
for
each
clustering
obtained
by
the
k-means
result.
The
WSS
consists
of
the
sum
of
the
square
of
the
euclidean
distances
from
each
observation to the
centroid of the
cluster to which
it belongs.
Consequently
,
a
graph
can
be
created
that
presents
the
WSS
for
each
value
of
k.
So
it
is
possible to
observe the point
k at which
the curve
presents
a
“fold”,
like
an
elbow
,
and
it
can
be
inferred
that
the
dierence
between
the
WSS
of
k
and
k+1
would
not
pr
ovide
substantial
gains
to
clustering.
The
next
step
is
to
create
the
daily
transition
matrices
of
states,
P
.
T
ransition
matrices
are
composed
of
the
transition
probabilities
pi,j
between a
state i
and a
state j
between a
period
n
and n+1 (Chung, 1960).
In
this
step,
based
on
Melo
(2022)
and
Ma
et
al.
(2020),
the
transition
probabilities
are
calculated
by
the
ratio
between
the
number
of
occurrences
of
transitions
from
state
i
to
state
j
and
the
3.2.2 Creating State T
ransition Matrices
The transition probabilities and transition matrices
are r
epresented by (2) and (3), respectively
.
total
occurrences
of
transitions
from
state
I,
as
repr
esented by (4).
125
T
o
analyze
the
pr
operties
of
the
transition
matrices,
thr
ee
measur
es
of
inter
est
were
calculated:
Stationary
distribution
(π)
-
repr
esents
the
distribution
of
states
in
which
the
chain
will
stabilize,
satisfying
the
equations
(5)
and
(6);
Recurrence
time
(mii)
-
the
expected
number
of
periods
for
a
system
in
state
i
to
return
to
that
Interpreting
the
above
concepts,
the
measures
presented are
important to
assist
in
analyzing the
behavior
of
the
Markov
Chains
model
when
the
process
stabilizes.
W
ith
a
stationary
distribution,
it
is
possible
to
identify
the
most
frequent
states
of
the
system,
where
the
process
is
most
likely
to
be
in the
future.
The recurrence time
allows
us
to
understand,
for
example,
the
average
time
to
return
to
a state
of
maximum
or
minimum
energy
Finally
,
in the
post-pr
ocessing phase,
the analysis
and
evaluation
of
the
results
obtained
in
the
previous
phase
were
carried
out,
with
the
objective
of
analyzing
the
characteristics
of
the
generation
of
the two
plants in
the four
climatic
seasons and
in
r
egions
of Brazil
with
dierent solar
incidences.
In
this phase,
the main
purposes were: to
identify
the
most
fr
equent
states
of
each
season;
to
compare
the
recurrence
times
of
the
most
extreme
power generation states; and to compare the rst
3.2.3 Obtaining the results
state
again,
as
in
the
equation
(7);
First
passage
time
(mij) -
The
number
of periods
expected
for
a
system
in
state
i
to
rst
passage
through
state
j,
as
in the equation (8) (Chung, 1960).
generation,
while
the
rst
passage
time
would
indicate
the
average
transition
time
between
these two states.
3.3. Post-processing
passage times
between the states
of highest and
lowest power generation of each climatic season.
126
4. DISCUSSION AND PRESENT
A
TION OF RESUL
TS
In
this
chapter
,
the
r
esults
of
the
methodology’
s
application
are
presented
for
the
two
plants
individually
,
starting
with
the
Nova
Olinda
Complex
(PI)
and,
later
,
addressing
the
Guaimbê
Complex
(SP).
Finally
,
the
results
of
the
two
plants
are
compared.
All
the
computational
steps
in
this
When
testing
the
stationarity
of
the
time
series
of
the
Nova
Olinda
Complex
in
the
analyzed
period,
the
result
obtained
was
a
p-value lower
than 0.01,
i.e., the
null hypothesis
that the
time series would
not be stationary is r
ejected. Thus, it is concluded
that
the
time
series
is
stationary
and,
therefor
e,
the
installed
capacity
is
constant,
which
is
fundamental
for
the
Markov
Chain
modeling
performed
in
this
work.
The
stationarity
of
the
time
series
in
the
period
can
be
seen
in
Figure
3,
which
repr
esents
the
average
daily
generation
per
month.
In
addition,
the
series
presents
considerable
volatility
and
annual
seasonality
,
with
higher
energy
generation
4.1. Nova Olinda Complex (Piauí)
chapter
were
performed
in
the
R®
programming
language (R Development Core T
eam, 2009).
4.1.1 Pre-pr
ocessing
4.1.1.1 Collection, analysis and treatment of data
in
the
months
of
July
,
August,
and
September
and lower generation in the months of December
,
January
,
February
,
and
March,
while
the
other
months
assume
intermediate
energy
generation
values.
It
is
possible
to
notice
greater
similarities
in
the
data
in
the
months
of
the
same
climatic
season. Due
to this observation,
an opportunity is
identied
to
model
the
time
series
by
subdividing
it
into
four
subsets,
one
for
each
climatic
season,
for
a better r
epresentation of the
data in each
period.
Figure 3 -
A
verage daily generation - Nova Olinda Complex.
Source: Based on data fr
om ONS (2022).
127
4.1.2 Processing
4.1.2.1 Discretization of the series via k-means
The
discretization
of
the
photovoltaic
time
series
was
performed
individually
for
each
climatic
season,
so
that
the
number
of
clusters
and
the
values
for
the
centroids
wer
e
better
suited
specically to each of the subsets.
The
rst
step
in
the
execution
was
to
create
a
function
that
would
calculate
the
k-means
for
values
of
k
from
1
to
20.
The
maximum
number
of 20 clusters was chosen because it was
veried
that
this
is
a
sucient
amount
to
repr
esent
the
data.
The
second
step
was
to
cr
eate
a
function
that
returned
WSS
for
each
of
the
20
clusters.
The thir
d step
was to
apply the pr
eviously created
functions
to
each
of
the
subsets
cr
eated.
The
fourth
step
was
the
application
of
the
elbow
T
able
1
shows
that
winter
has
the
highest
daily
average
of
energy
generation
in
the
Nova
Olinda
Complex
in
Piauí,
with
1,572.87
MWh/day
.
Meanwhile,
the
summer
has
a
daily
average
of
32%
lower
than
that
of
winter
,
with
1,066.39
MWh/day
,
probably
due
to
a
higher
number
of
cloudy
days
in
this
period
of
the
year
,
which
reduces
the
average
daily
solar
radiation
in
the
T
able 1:
Measures of daily energy generation - Nova Olinda Complex.
T
able 2:
Ideal number of clusters - Nova Olinda Complex.
T
able 3:
Centroids of the states - Nova Olinda Complex.
region
of the plant.
Furthermore, it
is also possible
to
note
that
winter
has
the
lowest
standard
deviation,
while
spring,
the
second
season
with
the
highest
average
energy
generation,
has
the
highest
standard
deviation,
therefor
e,
a
greater
dispersion of data.
method.
With
the
results
of
the
WSS
calculation,
a
list
was
created
that
contained
the
ratio
between
the
WSS
of
a
number
k
and
k+1
of
clusters
for
k=1
to
k=19.
Then,
for
each
of
the
subsets,
the
k-value
of
clusters
in
which
the
calculated
ratio
was
greater
than
0.90
was
identied,
i.e.,
the
number
of clusters necessary for the reduction of the sum
of
the
intra-cluster
squared
error
,
when
including
a
new
cluster
,
to
be
less
than
10%,
which would
not
justify the addition.
Thus,
the
k-means
result
for
each
of
the
subsets
found
the
ideal
number
of
clusters
(T
able
2)
and
centroid values (T
able 3).
128
4.1.2.2 Creating State T
ransition Matrices
4.1.2.3 Obtaining the results
In
this
step,
the
transition
matrices
of
the
Nova
Olinda
Complex (Figure 4)
were constructed
from
All
the
transition
matrices
created
were
classied
as
irreducible
and
ergodic,
important
properties
for
the
Markov Chain
to
have
a
stationary distribution.
Figure 4 -
T
ransition matrices - Nova Olinda Complex.
T
able 4:
Stationary distribution - Nova Olinda Complex.
Then, stationary
distributions (T
able 4),
recurr
ence
times
(T
able
5),
and
rst
passage
times
(Figur
e
5)
were calculated.
the
transition
frequencies
between
the
states
for
each subset.
129
T
able 5:
Recurrence time - Nova Olinda Complex.
Figure 5 -
First passage time - Nova Olinda Complex.
130
4.1.3 Post-processing
4.1.3.1 Evaluation and interpretation of r
esults
After
obtaining
the
model’
s
results,
it
becomes
possible
to
analyze
and
interpret
the
generated
values
and
better
understand
the
behavior
of
the
daily
photovoltaic
power
generation
time
series,
mainly
from
the
stationary
distributions,
recurr
ence
times and rst passage times.
From
the
stationary
distribution,
in
T
able
4,
it
is
observed
that
the
system
presents
higher
probabilities
for
the
states
of
intermediate
generation
values
in
the
summer
and
spring
seasons.
Also,
the
probabilities
decay
little
by
little
and
in
a
similar
way
for
the
lower
and
higher
extreme
states.
Another
way
to
analyze
it
is
by
the
time
of
r
ecurrence
of
the
states
in
T
able
5.
In
both
seasons,
the
r
ecurrence
times
of
the
extreme
states
are
signicantly
higher
compared
to the central states
and very close to each
other
.
Analyzing
the
extr
eme
states,
in
the
summer
,
states
1
(289
MWh)
and
11
(1,819
MWh)
have
a
recurr
ence
of
25
and
29
days,
respectively
,
while
states
1
(309
MWh)
and
8
(1,969
MWh)
in
spring
have
a r
ecurrence
of 18
and
19
days, r
espectively
.
Consequently
,
the
tendency
is
for
the
system
to
r
emain
in
medium-generation
states
and
the
extremes
to
be
rarer
,
with
lower
expectations
of
low
or
high
generation
in
a
day
,
especially
in
the
summer
,
whose
recurr
ence
times
of
extreme
states are even longer
.
Autumn,
on
the
other
hand,
has
a
higher
probability
of
being
in
the
central
and
upper
states,
with
lower
probabilities
in
states
of
lower
energy
generation,
comparatively
.
At this season,
the two states
with
the
highest
power
generation,
states
11
(1,582
MWh)
and
12
(1,709
MWh),
have
recurr
ence
times
of
9
and
13
days,
respectively
.
Meanwhile,
the r
ecurrence times
of the
two lowest-generation
states,
states
1
(307
MWh)
and
2
(624
MWh),
are
37
and
22
days,
respectively
.
In
addition,
the
recurr
ence time
of
state
1
of
autumn
is the
longest
among
all
states
of
all
seasons,
i.e.,
autumn
presents
the
longest
average
period
for
the
system
to
return
to
low
levels
of
power
generation.
Hence,
it
appears
that
the
system
has
a
tendency
towards
higher states with a lower risk of low generation.
Furthermore,
by
investigating
the
rst
passage
times
of
summer
and
spring,
it
is
possible
to
analyze
that
the
time
to
leave
the
state
of
lowest
energy
generation
and
reach
the
state
of
highest
generation
for
the
rst
time
is
longer
than
the
reverse. For
example,
the
rst passage
time
from
state
1
(309
MWh)
to
state
8
(1,969
MWh)
in
the
spring
is
51
days,
while
the
time
from
state
8
to
state
1
is
30
days,
approximately
40%
shorter
.
Therefor
e,
although
the
probabilities
of
the
system
being
at
each extr
eme ar
e
close,
once the
system
is
in
a
low-generation
state,
it
will
take
longer
to
reach
the
higher
-generation
states
in
both
seasons.
Meanwhile,
when
looking
at
winter
,
the
rst
passage
times
between
the
two
most
extreme
states,
lower
and
upper
,
are
close
—
32
days
from
state
1
(875
MWh)
to
state
8
(1,945
MWh)
and
30
days
from
state
8
to
state
1—
although
their
recurr
ence
times
ar
e
quite
dierent
(20
days
for
state 1 and 11
days for state 8).
It is inter
esting to
note
that
the
rst
passage
times
between
states
with
mor
e
distant
generation
levels
may
be
shorter
than
among
others
with
closer
generations.
For
example,
the
rst
passage
time
from
state
2
(1,209
MWh)
to
state
3
(1,407
MWh)
is
11
days,
while
the
time fr
om
state 2
to state
6
(1,720
MWh)
is 8 days.
131
By testing the
stationarity of the time
series of the
Guaimbê
Complex
in
the
analyzed
period,
it
was
concluded
that
the
time
series
is
stationary
and,
therefor
e,
the
installed
capacity
is
constant.
The
stationarity of
the time series
in the
period can be
seen
in
Figur
e
6,
which
repr
esents
the
average
T
able
6
shows
that
spring
has
the
highest
daily
average
of
energy
generation
in
the
Guaimbê
Complex,
with
752.92
MWh/day
.
Meanwhile,
the
summer
has
a
daily
average
of
5%
lower
than
that
of
spring,
with
717.33
MWh/day
,
being
the
lowest
average
for
the
plant.
Consequently
,
the
low
variability
of
energy
generation
between
the
seasons
of
the
year
is
evident,
with
all
values
4.2. Guaimbê Complex (São Paulo)
4.2.1 Pre-pr
ocessing
4.2.1.1 Collection, analysis and treatment of data
daily generation per month.
In addition, the series
has
considerably
lower
volatility
than
that
of
the
Nova
Olinda
Complex,
with
low
variations
in
energy generation over the months.
being
considerably
close
to
the
general
average.
Also,
the
standard
deviation
of
the
seasons
also
assumes close values.
T
able 6:
Measurements of daily energy generation - Guaimbê Complex.
132
4.2.2 Processing
4.2.2.1 Discretization of the series via k-means
The
discr
etization
of
the
photovoltaic
energy time
series
for
the
Guaimbê
Complex
was
performed
with
the
same
method
as
the
Nova
Olinda
Complex,
but
in
a
totally
independent
way
,
using
the
k-means
technique
and
the
elbow
method.
The
ideal
number
of
clusters
and
centroid
values
are shown in T
ables 7 and 8, respectively
.
T
able 7:
Ideal number of clusters - Guaimbê Complex.
T
able 8:
Centroids of the states - Guaimbê Complex.
Figure 7 -
T
ransition matrices - Guaimbê Complex.
Thus,
the
transition
matrices
of
states
of
the
Guaimbê
Complex
were
cr
eated,
repr
esented
in
Figure 7.
Then, stationary
distributions (T
able 9), r
ecurrence
times
(T
able 10),
and rst
passage times
(Figure
8)
4.2.2.2 Creating State T
ransition Matrices
4.2.2.3 Obtaining the results
were calculated.
133
T
able 9:
Stationary distribution - Guaimbê Complex.
T
able 10:
Recurrence time - Guaimbê Complex.
Figure 8 -
First passage time - Guaimbê Complex.
134
4.2.3 Post-processing
4.3 Comparison of results
4.2.3.1 Evaluation and interpretation of r
esults
W
ith
the
measurements
of
interest
obtained
for
the
Guaimbê Complex,
the next step
is to
analyze the
model’
s characteristics for each of the seasons.
In
summer
,
the
stationary
probability
of
the
system
being in
the state
of
lower power
generation is
the
lowest
(2.27%),
r
esulting
in
a
r
ecurrence
time
of
44
days,
that
is,
the
occurrence
of
a
state
of
low
generation
is
extremely
rare,
and,
once
in
this
state,
many
transitions
are
expected
for
the
return.
Furthermore, state
2
(386
MWh)
has
the second-
lowest
stationary
probability
at
7.47%,
followed
by
state
8
(1,018
MWh)
at
10.11%.
The
states
with the highest
probabilities ar
e the higher
power
plants,
and
the
state
with
the
highest
stationary
probability is state 7 (909 MWh), with 19.86%.
Looking
at
autumn,
the
system
has
a
higher
probability of being stationary in
the upper central
states of power generation values
in the seasons,
with
the
probabilities
gradually
decreasing
to
the
lower
and
upper
extreme
states.
The
two
states
with
the
longest
recurr
ence
times
are
the
extremes,
states
1
(244
MWh)
and
9
(992
MWh),
with
15
and
23
days,
respectively
.
W
inter
,
on
the
other
hand,
in
the
Guaimbê
Complex,
has
higher
stationary
probabilities
for
the
upper
states
and
very low
probabilities for
the four states
with lower
energy
generation.
An
interesting
case
is
that
the
recurr
ence
time
of
state
2
(324
MWh)
is
38
days,
which
is
approximately
40%
longer
than
the
time
of
state
1
(182
MWh)
27
days.
In
this
way
,
the
risk
of
the
system
being
in
low-generation
states
is
lower
,
and
there
is
an
expectation
of
higher
energy
generations, comparatively
.
Spring
has more balanced
stationary
pr
obabilities
among its eight
states, with the
exception of state
1
(269
MWh),
which
has
lower
power
generation
and a probability of only 5%.
Analyzing
the
times
of
the
rst
passage,
it
can
be
seen
that,
in
the
summer
of
the
Guaimbê
Complex,
the time
to
leave
the state
of
the
highest
generation to the
state of the lowest
generation is
more
than
double
the
reverse.
The
rst
passage
time
from
state
8
(1,018
MWh)
to
state
1
(234
MWh)
is
47
days,
while
from
state
1
to
state
8
is
20
days.
Hence,
this
characteristic
is
favorable
to
generation
because
the
average
time
to
have
a
low
generation
from
a
high
generation
is
high.
However
,
autumn
and
winter
have
rst
passage
times
with
the
r
everse
logic,
it
takes
longer
to
move
from a
state
of lower
generation
to one
of
gr
eater
generation.
This
analysis
is
important
because,
in
low-generation
situations,
the
expected
time
to
return to
high-generation is longer
. In
the autumn,
the
rst
passage
time
from
state
1
(244
MWh)
to
state
9
(992
MWh)
is
38
days,
and
the
reverse
is
23 days. Meanwhile,
in winter
, the
time from state
1
(182
MWh)
to
state
11
(983
MWh)
is
62
days,
and the reverse is 30 days.
Analyzing
the
time
series
of
the
Nova
Olinda
and
Guaimbê
complexes,
the
dierences
in
the
variability
of
the
average
photovoltaic
energy
generation
throughout
the
year
are
evident
since
Nova
Olinda
pr
esents
seasonality
with
higher
average
generation
in
winter and
lower
in
summer
,
which
is
the
wet
period,
while
the
averages
of
Guaimbê
are
closer
in
all
climatic
seasons.
In
the
case
of
Nova
Olinda,
the
reason
for
subdividing
the
series
by
the
climatic
seasons
to
perform
the
modeling
is
more
evident,
however
,
although
the
Guaimbê
Complex
presents
more
homogeneous
monthly
averages,
the
results
for
the
stationary
distributions
and
recurr
ence
and
rst
passage
135
times
were
signicantly
dierent
in
each
season,
as
pr
eviously
analyzed.
Thus,
the
subdivision
by
climatic
season
pr
oved
to
be
relevant
for
both
plants.
Another
interesting
fact
is
that
the
climatic
seasons aect
each r
egion dierently
as well,
with
similarities
between
dier
ent
seasons
in
the
two
regions.
For
example,
the
highest
concentration
of
stationary
probabilities
in upper
central states
is
a case
pr
esent in
summer and spring
in the
Nova
Olinda
Complex,
but
it
also
happens
in
the
autumn
in
the
Guaimbê Complex.
On
the
other
hand,
the
autumn
of
Nova
Olinda
is
similar
to
the
winter
of
Guaimbê because
the states
of lower
generations
have
signicantly
lower
stationary
probabilities
than
the
others
and
higher
probabilities
in
the
higher
states.
Meanwhile,
Nova
Olinda’
s
winter
and
Guaimbê’
s
spring
ar
e
the
seasons
with
the
most
balanced
stationary
pr
obabilities
between
the states.
In
addition,
analyzing
the
rst
passage
times,
other
similarities
were
found.
The
cases
in
which
the
rst
passage
time
from
the
state
with
the
highest
generation
to
the
lowest
was
longer
than
the
inverse
were
the
autumn
in
Nova
Olinda
and
the summer
in Guaimbê.
The opposite
happened
in
the
summer
and
spring
in
Nova
Olinda
and
in
the
autumn
and
winter
in
Guaimbê.
On
the
other
hand,
the
winter
of
Nova
Olinda
and
the
spring
of
Guaimbê
had
the
closest
rst
passage
times
when comparing the most extreme states.
Finally
,
BES
can
use
this
analysis
to
assist
in
the
country’
s
energy
planning
by
calculating
the
probability
of
possible
scenarios
of
low
or
high
photovoltaic
generation
by
region
and
climatic
season.
The
detailed
study
of
the
characteristics
of
renewable
sour
ces
brings
greater
security
to
the supply of energy demand in the country
.
Brazil
has
been
going
through
a
process
of
changing its energy matrix and increasing the use
of
renewable
energies
non-dispatchable.
In
this
context,
photovoltaic
solar
energy
has
stood
out
due
to
the
signicant
growth
of
its
shar
e
in
the
country
. Hence, its
characteristics of
intermittency
and random
uctuations have
a greater
impact on
the
national
energy
supply
scenario.
Ther
efore,
the
study
of
photovoltaic
generation
through
modeling methods is relevant, and an opportunity
to
contribute
to
the
literature
was
found
thr
ough
the present work.
This
work
studies
the
generation
characteristics
of
two
photovoltaic
solar
power
plants
located
in
regions
with
solar
incidences
of
dierent
magnitudes
and
seasonalities.
The
methodology
used
was
based
on
Markov
Chains.
The
time
series
were
subdivided
among
the
climatic
seasons
of
the
year
.
Then,
the
state
transition
matrices
5. CONCLUSION
were
created,
and
the
results
of
the
measures
of
interest,
such
as
stationary
distribution,
recurrence
time,
and
rst
passage
time,
were
investigated.
Consequently
,
it
was
possible
to
analyze
the
dierences
between
the
photovoltaic
energy
generation in
the dier
ent seasons
and r
egions. In
this
way
,
the
objective
of
the
work
was
achieved
in a pertinent way
.
Conrming
the
initial
hypothesis,
the
results
showed
signicant
dierences
in
solar
energy
generation
between the
regions and
between
the
climatic
seasons,
which
evidenced
the
relevance
of
the
comparative
study carried
out. By
analyzing
and better
understanding the
specicities of
each
location
and
season,
power
plants
and
the
Brazilian
Electric
System
can
plan
more
eciently
about
energy
generation,
analyzing
the
probabilities
of
the
occurrence
of
states
of
dierent
generation
values.
136
6. REFERENCES
Chung, K. L. (1960). Markov Chains with Stationary T
ransition Probabilities. Springer
-V
erlag.
Dickey
,
D.
&
Fuller
,
W
.
(1979).
Distribution
of
the
Estimators
for
Autoregr
essive
T
ime
Series
W
ith
a
Unit
Root.
Journal of the American Statistical Association, v
. 74, p. 427-431.
EPE (2022). Fontes de Energia. https://www
.epe.gov
.br/pt/abcdenergia/fontes-de-energia
EPE (2023). Balanço Energético Nacional 2023. Ministério de Minas e Energia.
Fritz,
M.,
Behringer
,
M.
&
Schwarz,
H.
(2020).
LOG-Means:
eciently
estimating
the
number
of
clusters
in
large
datasets. Proceedings of the VLDB Endowment, v
. 13, n. 12.
G1
(2019).
Complexos
de
energia
solar
são
inaugurados
em
duas
cidades
do
interior
de
SP
.
https://g1.globo.
com/sp/bauru-marilia/noticia/2019/08/15/complexos-de-energia-solar
-serao-inaugurados-em-duas-cidades-
do-interior
-de-sp.ghtml
Gadelha, M. L. (2020). Climas do Piauí: interações com o ambiente. Edufpi.
IEA
(2023).
Renewable
Energy
Market
Update
-
June
2023.
https://www
.iea.org/reports/r
enewable-energy-
market-update-june-2023
Imho, J.
(2007). Desenvolvimento
de Conversores Estáticos
para Sistemas
Fotovoltaicos Autônomos.
Master’
s
thesis presented to the School of Electrical Engineering of Universidade Federal de Santa Maria.
Ma, M.,
Y
e,
L., Li,
J., Li,
P
.,
Song, R.
& Zhuang,
H.
(2020). Photovoltaic
Time
Series Aggregation Method
Based
on K-means and MCMC
Algorithm. Asia-Pacic Power and Energy
Engineering Confer
ence, v
. 2020-September
,
n. 9220338.
Maçaira, P
., Cyrillo,
Y
. M.,
Cyrino, F
.
& Souza, R. C.
(2019). Including wind power
generation in Brazil’
s
long-term
optimization model for energy planning. Energies, v
. 12, n. 826.
Macqueen,
J. (1967).
Some
methods for
classication
and
analysis of
multivariate
observations. In
Proceedings
of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, Oakland, CA, USA, p. 14.
Malar
,
J. P
.
(2022).
Conheça
os
tipos de
energia
renovável
e quais
são
usados
no
Brasil. CNN
Brasil.
https://www
.
cnnbrasil.com.br/business/conheca-os-tipos-de-energia-renovavel-e-quais-sao-usados-no-brasil
Melo, G., Cyrino, F
. & Maçaira, P
. (2022). Simulação estocástica conjunta de energias r
enováveis. Master’
s thesis
– Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.
Nascimento,
A. &
Araújo,
T
.
(2017).
Maior par
que
solar da
América
Latina
é inaugurado
no
Piauí. https://g1.globo.
com/pi/piaui/noticia/maior
-parque-solar
-da-america-latina-e-inaugurado-no-piaui.ghtml
Norris, J. R. (1998). Markov chains. Cambridge university press.
ONS (2022). http://www
.ons.org.br
Pereira, E. B.,
Martins, F
. R.,
Gonçalves, A.
R., Costa, R.
S., Lima,
F
.
L., Rüther
, R.,
Abr
eu, S.
L., T
iepolo, G.
M.,
Pereira, S. V
. & Souza, J. G. Atlas brasileiro de energia solar
. 2.ed. São José dos Campos: INPE.
R
Development
Core
T
eam
(2009).
R:
A
language
and
environment
for
statistical
computing.
R
Foundation
for
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www
.R-project.org
Sigauke,
C.
&
Chikobvu,
D.
(2017).
Estimation
of
extreme
inter
-day
changes
to
peak
electricity
demand
using
Markov chain analysis: A comparative analysis with extreme value theory
. Jour
nal of Energy in Southern Africa, v
.
28, n. 4.
Thorndike, R. L. (1953). Psychometrika, v
. 18, p. 266-267.
137
China and the global expansion of gr
een
ener
gy technologies: EVs, batteries and
lithium investments in Latin America.
China y la expansión global de las tecnologías de energía
ver
de: vehículos eléctricos, baterías e inversiones en litio
en América Latina
1.- University of Hong Kong
ORCID: 0000-0003-0282-468X.
Ricardo Lopes Kotz
1
Recibido: 17/11/2024 y Aceptado: 13/12/2024
138
139
China
se
ha
convertido
en
un
líder
mundial
en
baterías
de
litio
y
ha
utilizado
estas
capacidades
para
desarrollar un importante
ecosistema de
innovación en vehículos
eléctricos, cuyas
empr
esas
se están
expandiendo
al mundo.
El factor
clave
para la
promoción exitosa
de los
vehículos
eléctricos en
China
ha
sido
la
política
industrial.
Las
tecnologías
ver
des
pueden
verse
como
la
nueva
frontera
para
la
expansión
global
de
las
empresas
chinas
debido
a
sus
capacidades
tecnológicas
y
de
innovación
y
América
Latina
es
uno
de
los
principales
destinos
de
la
inversión
extranjera
directa
(IED)
en
vehículos
eléctricos,
litio
y
baterías.
El
pr
esente
artículo
examina
el
panorama
y
las
tendencias
de
la
IED
realizada por empresas chinas en la
r
egión, con el
objetivo de analizar la
posibilidad de que los
países
latinoamericanos
integren
la
cadena
de
valor
liderada
por
China
en
energía
verde
como
parte
de
sus
procesos
de desarrollo
y políticas industriales. Los
resultados
son pr
eliminares, per
o inferimos que hay
una
nueva fase
de participación
China en
América
Latina post-Covid,
con un
cambio en
el
perl de
la
IED:
1)
las inversiones
relevantes
ahora se
realizan
no solo
a
través
de
empr
esas
estatales,
sino
cada
vez
más
realizadas
por
empresas
privadas;
2)
los
sectores
de
destino
están
cambiando
lentamente
del
petróleo, el
gas
y la
agricultura
hacia fuentes
de
energía renovables,
vehículos eléctricos
y
minería
de
minerales
estratégicos;
3)
los
ujos
de
inversiones
son
menores
en
la
cantidad
total,
pero
hay
un
mayor
númer
o
de
pr
oyectos
en
la región en
general;
4) los
pr
oyectos
de IED
se dirigen
cada vez
más
a
sectores
intensivos
en
conocimiento/tecnología,
en
lugar
de
sectores
intensivos
en
capital,
con
un
aumento gradual de la IED totalmente nueva como modo de entrada.
China
has
become
a
global
leader
in
ion-lithium
batteries
and
has
used
these
capabilities
to
develop
an important innovation ecosystem
in electric vehicles, which ar
e now expanding to the world. The
key
driver to China’
s successful promotion of electric vehicles has been industrial policy
. Green technologies
can
be
seen
as
the
new
frontier
for
the
global
expansion
of
Chinese
rms
due
to
their
innovation
and
technological capabilities and Latin America is one of the main destinations for foreign dir
ect investments
(FDI). The present article examines the landscape and tr
ends of FDI conducted by Chinese rms in the
region,
analyzing
the
possibility
for
Latin-American
countries
to
integrate
Chinese-led
value
chain
in
green
energy
as
part
of
their
developmental
processes
and
industrial
policies.
The
key
ndings
ar
e
preliminary
,: 1) relevant investments ar
e now conducted not only through state owned enterprises,
but increasingly made
by private
rms,; 2) sectors
of destination
ar
e slowly
changing from oil,
gas and
agriculture
towards
renewable
energy
sources,
electric
vehicles
and
mining
of
strategic
minerals;
3)
the
ows
of
investments
are
smaller
in
the
total
quantity
,
but
there
is
a
higher
number
of
projects
in
the
region
overall;
4)
the
FDI
projects
are
increasingly
directed
in
knowledge/technologically
intensive
sectors, instead
of capital
intensive ones
with a
gradual incr
ease in gr
eeneld FDI
as the
mode of
entry
.
P
ALABRAS CLA
VE:
China;
vehículos eléctricos; upgrading; inversiones extranjeras directas; América
Latina.
KEYWORDS:
China; electric vehicles; upgrading; foreign dir
ect investment; Latin America.
Resumen
Abstract
140
1. INTRODUCTION
China
has
become
a
global
leader
in
ion-lithium
batteries
and
has
used
these
capabilities
to
develop
an
important
innovation
ecosystem
in
electric
vehicles, which ar
e now expanding globally
. CA
TL
is the most well-known successful case in battery
production,
followed
by
BYD,
which
produces
both
batteries
and
cars,
in
a
business
model
of
vertical
integration.
Another
important
Chinese
player
in
EVs
market
is
Great
W
all
Motors.
T
aken
together
these
rms
have
invested
signicant
funding
in
foreign
direct
investment
projects
for
manufacturing and assembly
, mainly in
Argentina,
Brazil
and
Chile.
Other
important
Chinese
actors
in
this
landscape
include
mining
rms
such
as
T
ianqi
Lithium,
Jixing
Mining
and
Ganfeng
Jixin
(Sanderson, 2022; AEI, 2024).
Green
technologies
and
eorts
towards
decarbonization can be seen
as a new frontier for
the global expansion of Chinese rms due to their
innovation
and
technological
capabilities
in
these
areas,
and
Latin
America
has
been
a
region
of
growing
inter
est
in
this
regar
d.
Considering
these
points,
the
present
article
examines
the
landscape
and
trends
of
FDI
conducted
by
Chinese
rms
in
the
region,
aiming
to
analyze
the
possibility
for
Latin-American
countries
to
integrate
Chinese
FDI in
green
energy as part
of their
developmental
path and industrial policies.
Ford’
s
popularization
of
combustion
vehicles
led
the way
for
the creation of
immense wealth
for oil
companies
in
the
XX
century
.
The
popularization
of electric
cars
could create wealth
for the
mining
companies
that
access
the
minerals
needed
for
producing
the
batteries
for
these
vehicles,
something
that
will
bear
a
cost
for
the
environment.
The
lithium-ion
battery
is
a
game
changer
due
to
its
capacity
for
powering
digital
devices,
the
fact
of
being
small-sized,
safe,
and
oering
a
long
time
of
use
(autonomy)
before
needing
to
be
recharged.
These
batteries
have
made
possible
the
extensive
production
and
use
of
electric
vehicles.
Investments
in
R&D
capacity
for
ion-
lithium
batteries
and
governmental
subsidies
for
the
purchase
of
electric
vehicles
are
the
main
policy
drivers
leading
the
development
of
these
sectors.
In
2021
China
sold
half
of
the
world’
s
EVs.
However
,
this
development
has
not
been
without
costs.
From
2009-2019,
the
total
cost
for the gover
nment stood at just
under 100 billion
USD. Almost
half of the
total corr
esponded to EV
purchase
subsidies
(Dezan
&
Shira
associates,
2020).
As the industry’
s capabilities grew
, subsidies have
been
lower
ed
and
R&D
investments
have
risen.
Between
2018-2020,
each
year’
s
R&D
spending
was
almost
six
times
the
spending
on
R&D
for
the
2009-2017
period,
showing
a
growing
concern
with
innovation
and
upgrading,
which
fuel
the
global expansion
of its
rms. The
resear
ch
will
include
a
theoretical
framing
regar
ding
the
importance of technology
and upgrading and has
a
focus
on
qualitative
analysis
using
the
case
study
method
mentioning
the
main
investments
in
the
countries in
the r
egion, semi-structured
interviews
were
conducted with specialists
in related
elds in
order
to
ascertain the
nature
and
trends
of
China’
s
FDI in Latin America.
The
article
will
be
structured
as
follows:
the
rst
section
will
analyze
the
importance
of
technology
for
economic
gr
owth
while
r
eviewing
concepts
such
as
upgrading.
It
is
an
important
topic
as
technological
capabilities
are
the
reason
that
explain
why
China
is
able
to
invest
abr
oad
and
compete
with
established
developed
countries
in
key
strategic
sectors.
The
second
section
will
analyze
the
development of
ion-lithium batteries
in
China; the thir
d section oversees the upgrading
in
the
EVs
sector
.
And
the
fourth
section
verses
on
the general
trends of
Chinese investments in
Latin
America’
s
energy
sector
,
with
a
focus
on
specic
projects,
located
mainly
in
Argentina,
Brazil
and
Chile. The conclusions analyze
all these facts and
present
the
preliminary
results
of
the
resear
ch
summarized in four key points.
141
2. ANAL
YTICAL FRAMEWORK: THE IMPOR
T
ANCE OF
TECHNOLOGY AND UPGRADING
T
echnology
is
a
fundamental
input
of
economic
growth, as
it
engenders
productivity gains
across
dierent
sectors.
In
this
sense,
technological
upgrading
pr
ovides
stimulus
and
supports
the
process
of
economic
development.
From
the
perspective
of
late
industrializers
or
emerging
countries,
it
is
a
necessary
input
in
order
to
promote
catching
up
with
global
markets.
Domination
of
the
leading
technologies
of
each
historical
period
allows
nations
to
capture
the
higher
value-added
activities
and
the
resulting
rents
in
order
to
foster
economic growth.
Solow
(1994)
was
perhaps
one
of
the
rst
to
point
out
the
importance
of
technical
advances
for
sustained
economic
growth,
by
separating
this
factor
from
the
inputs
of
capital
and
labor
which
were
prominently
featured
in
classical
economic
models.
Romer
(1990)
follows
on
this
thread,
but
pr
esents
an
endogenous
model
of
economic
growth,
highlighting
the
importance
of
human
capital
for
technological
change.
However
,
in
a
sense,
this
tradition
dates
back
to
Joseph Schumpeter’
s “Capitalism,
Socialism, and
Democracy”
(1942),
which
analyzes
economic
change and the role of innovation
and technology
in
increasing
productivity
.
One
main
subject
that
remains
across
these
studies
is
the
pr
evalence
of
state-led
policies
or
market
institutions
as
propellers of technological change.
Market-led
growth
often
focuses
on
the
role
of
rms
as
actors
in
the
process
of
technological
development,
while
also
recognizing
the
importance
of
institutions.
Institutions
are
the
rules
of
the
game
which
help
to
organize
the
economy
and the
market
(North,
1990). Examples
include
securing
pr
operty
rights,
an
adequate
system
of
intellectual
property
,
opportunity
for
high
quality
education,
among
others
(Acemoglu
and
Robinson,
2012).
The
State-led
growth
perspective r
elies on
public policy and
the agency
of
the
state,
through
industrial
policy
and
other
mechanisms,
to
foster
growth
and
innovation.
The
concept
of
the
developmental
state
was
coined
by
Chalmers
Johnson
(1984)
to
explain
the
development of
Japan in the
post-War
period and
later
has been
applied
to other
cases
in
Southeast
Asia,
such
as
South
Korea,
T
aiwan,
Singapor
e,
Hong Kong, among others (Haggard, 2018).
T
echnology
policy
is
a tool
by
which
the
State
acts
to
foster
the
development
of
specic
economic
sectors that are deemed
strategic for a country
. It
can
be
seen
dierently
from
the
perspective
of
a
developed
country
and
another
who
is
still
trying
to
catch
up
to
the
international
technological
frontier
.
However
,
the
perception
that
technology
is
central for
economic growth is
one
key aspect.
T
echnology
policy
aims
to
bridge
the
gap
between
investments in
basic science and
research
on one
hand;
and
the
activities
of
rms
and
industry
on
the other (Lundvall and Borras, 2005).
These
policies
ar
e
based
on
the
notion that
market
failures
need
some
form
of
intervention
in
order
to
be
solved
and
that
markets
may
not
be
the
most
ecient
allocators of
resour
ces for
invention and
innovation.
Arrow
(1962)
arms
that
markets
tend
to
underinvest
in
new
technologies
due
to
the
unpredictability
of
the
resour
ces
and the time that needs to be invested in
order
to
produce
protable
results
from
R&D.
The
author rearms the
importance of the
public sector
in this
process, in
order to
maximize spillover
eects
as
well
as
promoting
invention
and
innovation
as
public goods.
Even
if investments
in
innovation
do not
generate
immediate
gains
through
commercially
viable
products,
they
can
spillover
to other
activities
over
time.
Mazzucatto
(2014),
for
example,
shows
the
importance
of
the
investment
in
military
resear
ch
in
the
United
States
(conducted
mainly
by
the
government
agency
DARP
A)
that
ended
up
creating
many
technologies,
such
as
infrar
ed
waves,
the
GPS,
the
inter
net,
touch
screen
technology
and
even
computers.
These
technologies
were
then
scaled
to
civilian
and
commercial
use,
engendering
new
whole
industries
and
high
protability
in
subsequent decades.
142
Furthermore,
in
r
ecent
years
technology
is
not
only linked
with actual
pr
oducts but
is intertwined
with
the
ability to
produce
knowledge. Knowledge
and
information
can
be
seen
as
commodities
or
be
characterized
as
intangible
assets,
such
as
patents,
trademarks,
industrial
designs,
marketing;
in
addition
to
other
forms
of
knowledge,
such
as
business
strategies,
organizational
capacity
,
management
tools,
among
others
is
an
important
fact
that
contributes
to
pr
osperity
and
development (Stiglitz, Greenwald, 2018).
The
national
systems
of
innovation
approach,
on
the
other
hand,
looks
at
the
interaction
between
the
state,
national
rms
and
research
institutions
aiming
at
a
broader
paradigm
for
analyzing
innovation.
Knowledge
is
assumed
to
be
the
central
element
for
the
economy
,
consequently
,
learning
and
innovation
are the
central
processes
through
which
knowledge
is
repr
oduced
and
applied
into
the
generation
of
value
through
goods
and services.
Lear
ning occurs
in
a
socially
embedded
context
and
in
a
dynamic
process
that cannot be dissociated
from the
modern state
(Lundvall, 2010).
In this sense,
the systems of innovation approach
present
and
encompassing
view
on
the
subject,
by
arming
that
countries
that
would
be
best
positioned
to
stimulate
innovation
would
foster
a
combination
of
three
elements
working
together:
1)
the
national
economy
and
public
policy;
2)
institutions
such
as
universities
and
resear
ch centers, and 3) private rms. The mutual
interaction
between
these
dierent
actors
with
their
respective
goals
and
perspectives
would
be
the
best
scenario
conducive
to
innovation
(Lundvall
and
Borras,
2005).
None
of
the
three
elements
of
an
Innovation
System
is
more
important
than
the
other
.
Depending
on
the
historical
period
and
the
technology
in
question,
one
of
these
three
elements
might
have
a
greater
role
in
generating
either radical or incr
emental innovations in a given
sector
.
According
to
a
Schumpeterian
view
,
there
ar
e
breaking
points
of
technological
change
which
bring
about
new
economic
paradigms.
These
radical
innovations
alter
the
structure
of
dierent
national
economies
which
later
expand
these
to
a
set
of
incr
emental
innovations
across
many
industries
(Perez
and
Soete,
1988;
Perez,
2001).
In
each of
these stages,
dierent
possibilities arise
for
late-industrializers
and
their
rms,
depending
on
the
responses,
catch-up
strategies,
and
the
global
geopolitical
context.
These
moments
of
rupture and change in technical paradigms would
be the
best window of opportunity
for latecomers
to
try
to
leapfrog
into
new
products
and
sectors
that
surpass
the
inter
national
technological
frontier
(Lee, 2019).
According
to
Lee
(2019)
catching-up
means
trying
to
close
the
gap
between
lower
and
higher
-income
countries
and
although
the
process
involves
a
certain aspect
of emulating the technologies
fr
om
the
leading
nations,
this
is
not
enough.
Catching
up
involves
taking
dierent
paths,
adapting
technologies
into
new
usages
or
new
scales
and
it
can
also
involve
leapfrogging.
By
leapfrogging
one
understands
a
process
in
which
a
less
advanced
nations
manages
to
produce
a
technology
that
transcends
the
inter
national
frontier
,
going
even
beyond
that
which
is
being
produced
in
the
leading nations.
Upgrading
can
occur
within
economic
sectors,
in
the
case
that
a
country
becomes
more
sophisticated,
more
ecient
and/or
adds
more
value
to
a
product
that
is
already
being
made.
Upgrading
can
also
occur
between
economic
sectors,
in
the case
that
a
country
or
rm ceases
to
produce
lower
value-added
goods
and
moves
into
other
economic
sectors. Henry
Y
eung
(2016)
cites
the
example
of
Samsung,
which
started
as
a
trading
company
focused
on
food
and
textiles
and
eventually
upgraded
into
high
value-added
activities
such
as
the
production
of
smartphones
and computers, for example.
Overall,
these
perspectives
emphasize
dierent
aspects
regar
ding
the
importance
of
technology
for
economic
growth
and
pr
osperity
.
There
are
dier
ent
ways
to
pr
omote
innovation
and
upgrading
if
these
matters
are
analyzed
through
a
predominantly
market-led
or
state-led
lenses.
Some
perspectives
emphasize
the
importance
of
institutional
factors
such
as
property
rights
while
others see
the importance
of technology
policy in
order
to addr
ess market failures.
Pundits studying
143
cases
of
late-development
point
that
industrial
policy
might
be
one
of
the
most
valuable
tools
in
order
to
foster
catching-up
processes.
Among
other
factors,
(neo)
Schumpeterian
perspectives
point
to
the
importance
of
specic
windows
of
opportunity
,
during
which
latecomers
can
approach
the
inter
national
technological
frontier
.
Finally
,
the
national
systems
of
innovation
approach
aim
to
bring
a
holistic
perspective
for
studying
innovation,
growth
and
technology
,
pr
esenting
a
framework
that considers
the importance
of rms,
universities and national institutions.
The
ion-lithium battery
has been
a
game changer
due
to
its
capacity
for
powering
digital
devices,
the
fact
of
being
small-sized,
safe,
and
oering
a
long time
of use
(autonomy) before needing
to be
recharged.
These
batteries
have
made
possible
the
extensive
production
and
use
of
electric
vehicles.
Although
rst
invented
in
the
1970’
s
in
the
context of gr
owing environmental concerns about
climate change
and the
high dependence
of oil in
economic
systems,
it
wasn’t
until
the
mid-1980’
s
that these batterie became eective to
be used in
vehicles.
ExxonMobil
and
BP
,
two
of
the
biggest
energy
companies
in
the
world,
were
among
the
rst
entities
to
fund
r
esearch
in
the
sear
ch
for
alternative
energies,
pr
edicting
that
combustion
vehicles would soon become obsolete.
However
,
in the
1980’
s
the tide
turned
with falling
oil
prices
fueling
yet
another
round
of
global
expansion
of
combustion
vehicles.
Accor
ding
to
Sanderson
(2022),
companies
investing
in
ion-
lithium
batteries
at
the
time
realized
that
it
would
take
too
long
to
see
returns
remotely
similar
to
those
that
could
be
rapidly
achieved
by
investing
in oil
and betting on
internal
combustion vehicles,
due
to
the
fact
that
at
that
point,
the
investment
in
ion-lithium
batteries
was
basically
still
working
in
the basic
science
stage of
innovation.
It wasn’t
until
1985,
with
the
innovations
made
by
Oxford-
based chemist John Goodenough that ion-lithium
batteries
would
become
suitable
to
be
used
in
vehicles.
3. THE STRA
TEGIC IMPORT
ANCE OF ION-LITHIUM
BA
TTERIES: THE CASE OF CA
TL
His
invention
would
pave
the
way
for
Japan-based
scientists
to
conduct
secondary
innovations
enhancing
the
batteries
capacity
,
operational
system,
and
weight,
which
would
ultimately
lead
to the
rise of
electr
onic
consumer products in
the
1990’
s
and
beyond,
initially
led
by
companies
such
as
Sony
,
T
oshiba,
among
others.
The
basic
science
in
lithium-ion
batteries,
which
is
a
crucial step for
any innovation, was developed by
resear
chers
in
the
United
States
and
the
United
Kingdom.
But
Japanese
resear
chers
and
rms
did
the
second
crucial
step:
upgrading
the
technology
for
mass
production
with
cost-eciency
.
This
is
the
key step
that
allows
for
the expansion
of
rms,
new
business
models
and
innovative
products.
If
Sony
was
the
mass
producer
for
the
batteries
that
would
be
used
in
consumer
goods,
China
would
occupy
this place
in r
egard
to ion-lithium
batteries
used in electric vehicles (Sanderson, 2022).
According
to
He
et.
Al.
the
T
enth
Five
Y
ear
plan
(2001-2005)
marks
the
beginning
of
an
ocial
policy
for
the
development
of
electrical
vehicles
in
China
through
growing
R&D
investments,
denominated
the
“Three
V
erticals
and
Three
Horizontals”.
The
Thr
ee
Horizontals
refer
to
developing
technologies
for
engines,
batteries,
and
vehicle
controllers,
corresponding
to
the
parts
and
components
used
to
build
the
Three
V
erticals,
which corresponds to the nished
goods such as
battery electric vehicle, hybrid
electric vehicle and
fuel cell electric vehicle (FCEV) (He et. Al., 2022).
144
In
2009
Beijing
expanded
its
previous
industrial
policy
for
the
EV
industry
.
W
an
Gang,
Minister
of
Science
and
T
echnology
and
automotive
expert,
was
a
central
gure
in
this
process.
China
also
launched a program to subsidize electric buses in
2009 covering
ten cities,
which later expanded
to
include
nancing
for
private
electric
car
covering
six
cities as
the
rst
eorts
to try
to
stimulate
that
segment.
Between
2009
and
2017
subsidies
reached a staggering US$
60 billion. Gover
nment
procur
ement
was
a
strong
policy
tool
with
local
governments
purchasing
vehicles
from
local
companies (Sanderson, 2022).
China
accounted
for
more
than
60%
of
global
sales
of
electric
vehicles
in
2022,
showing
the
success
of
these policies over time. The country has
focused
especially
on
battery-powered
vehicles
due
to
its
strong capabilities
in
battery
production. This
has
resulted
in the
growing
importance of
the minerals
used
to
fuel
these
industries.
In
fact,
lithium,
cobalt,
nickel,
and
copper
,
as
well
as
aluminum
and
steel
are
some
of
the most
important minerals
in
the
value
chain.
The
battery
is
one
of
the
most
expensive
parts
of
an
electric
vehicle
and
this
is
especially
important
considering
that
more
than
60%
of
EVs
in
China
and
Europe
are
SUVs
and
larger
cars,
which
require
batteries
that
can
be
two
to
three
times
larger
than
those
used
in
smaller
models (IEA, 2023).
The
extraction
of
the
minerals
needed
to
build
electric
vehicles
are
subject
to
geopolitics
and
distribution
conicts
between
countries,
not
to
mention
the
fact
that
they
have
an
environmental
impact.
The
structure
of
ion-lithium
batteries
supply
chain
has
shown
China’
s
greater
dominance,
with
China-based
CA
TL
(Contemporary
Amperex
T
echnology),
founded
in
2011,
r
eaching
more
than
37%
of
the
global
market
share
by
2022.
Furthermore,
the company has managed
to strike
a
deal
in
2019
to
produce
ion-lithium
batteries
in
Germany
,
supplying
companies
such
as
Audi,
BMW
and
Mercedes-Benz
in
their
attempt
to
advance in
the EVs market.
It also
supplies goods
to Daimler’
s electric buses (Kim, 2023).
A
TL
was originally founded in
Hong Kong in 1999
as
a
company
manufacturing
batteries
for
mobile
phones.
In
the
2000’
s
with
the
boom
of
mobile
phones
and
later
MP3
players,
A
TL
bought
a
patent
from
Bell
labs
in
the
US
to
produce
polymer
batteries. A
TL
managed to
pr
oduce
batteries at
a
much lower
cost than their
Kor
ean and
Japanese
counterparts
and
became
a
supplier
to
major
telecommunications
and
electronics
companies.
This
period
coincided
with
China’
s
entry
into
the
WTO
and
foreign
direct
investment
was
abundant.
A
TL
r
eceived
funding
from
the
US-based
Carlyle
Group
and
integrated
Apple’
s
GVC,
supplying
batteries
for
the
Ipod
in
2004.
The
company
was
on
a
path
of
moder
nization
and
in
2005
it
was
bought
by
the
Japanese
company
TDK
(Sanderson, 2022).
CA
TL
separated
from
A
TL
in
2011
in
the
context
of
the
boom
of
the governmental
policies
fostering
the
expansion
of
electric
vehicles
in
China.
The
company
hir
ed
foreign
talent
who
had
worked
on
the
joint
ventures
between
Chinese
rms
and
multinational
companies
in
the
automotive
sector
in
order
to structur
e
its r
esearch
and
development
sector
. CA
TL built
a battery
that lasts for
16 years,
meaning
it
could
be
reutilized,
outlasting
the
original car
.
It also
continued to
work on
r
educing
the
size
and
weight
of
the
batteries
as
well
as
improving
durability
and
safety
.
The
reduction
of
costs
is
a
fundamental
step
in
popularizing
EVs
for
mass consumption.
In 2013 CA
TL was contracted
by BMW Brilliance,
a
joint
ventur
e
with
a
Chinese
rm.
The
rigorous
supervision
and
standards
of
BMW
helped
CA
TL
to
upgrade
its
processes
and
product
quality
.
According to Sanderson:
“Between
2014
and
2017
CA
TL
’
s
sales
increased
at a
compound
annual
growth
rate
of 263 per
cent. (...) In 2017 CA
TL led for an
initial
public
oering
(IPO)
on
the
Shenzhen
Stock
Exchange,
with
the
help
of
Goldman
Sachs.
The
company
raised
$853
million
and
became
the
world’
s
largest
producer
of
electric
car
batteries
with
a
fty
percent
share
of
the Chinese
market. It
would maintain
that
position consistently for
the next four years.”
(Sanderson, 2022, p.
44).
145
Furthermore,
the
use
of
robotics
rapidly
enhanced
China’
s
electric batteries
scale,
r
educing
its
costs
and
raising
its
competitive
capabilities
(W
ang,
2023).
The
fact
that
the
Chinese
Gover
nment
determined
that
Chinese
electric
vehicles
had
to
use
locally
pr
oduced
batteries
was
a
powerful
incentive
to
the
industry’
s
expansion.
In
2020
T
esla
created
a factory
in Shanghai
using
CA
TL as
their supplier (Kane, 2020).
The key
driver to
China’
s successful
promotion of
electric
vehicles
has
been
subsidies
for
purchasing
EVs
(given
to
the
automakers
for
each
car
sold),
which
were
rst
introduced
in
2009.
Although
they
were
supposed
to
be
phased
out
several
times
including
this
year
,
there
is
renewed
discussion
about
extending
them.
1
Over
time,
the
subsidies
have
been
adjusted
in
large
part
due
to
widespread
scale
fraud
by
automakers
who
sold
cars
to
themselves
and
passed
gover
nment
certication
tests
with
larger
batteries
than
were
used
in
the
cars
sold
on
the
market
in
or
der
to
qualify
for
larger subsidies
(subsidies were based on
battery
size).
T
ax
rebates for EVs
have also
played a role
and
will
loom
larger
as
China
eventually
phases
out
subsidies.
The
government
also
introduced
a
credit
system
in
2018.
Automakers
received
credits
for
each
EV
sold
with
the
aim
to
force
automakers
to
sell
more
and
more
EVs
as
a
percentage
of
total
cars
sold
(Y
ang
et.
al.
2021;
Dezan Shira and Associates 2022).
The
cost
of
building
this
industry
has
been
substantial
for
the
gover
nment.
From
2009-2019,
the
total
cost
was
just
under
100
billion
USD.
Almost
half the total were the EV purchase subsidies. As
subsidies
have
been
ratcheted
down,
the
state
has
incr
eased
R&D spending.
For
both 2018
and
2019,
each
year’
s
R&D
spending
was
almost
six
times
the
spending
on
R&D
for
the
2009-2017
3. THE STRA
TEGIC IMPORT
ANCE OF ION-LITHIUM
BA
TTERIES: THE CASE OF CA
TL
1.- Provincial governments have stepped in to make up for the shortfall in
central government subsidies (https://www
.bloomberg.com/news/
articles/2023-03-07/china-s-provinces-oer
-ev-sweeteners-as-national-subsidies-fade#xj4y7vzkg).
period (Dezan Shira
and Associates 2022).
While
many
have hailed
the gover
nment’
s
investment
in
the
infrastructur
e
of
EVs,
it
has
not
been
costly
relative
to
the
other
types
of
expenditure.
Four
of
the
top
ten recipients
of
subsidies
in
China are
automotive
manufacturers
and
most
of
those
subsidies are for
EVs: SAIC,
BYD, Great W
all and
JAC.
Contemporary
Amperex
T
echnology
Co.
Limited
(CA
TL)
was the
eleventh
largest
r
ecipient,
and two other
automakers were in the top
twenty
(Kawase 2022).
The
goal
established
by
the
Central
Gover
nment
for 2020 was for new energy and electric vehicles
to
account for
70 per
cent
of
the domestic
market.
Moreover
,
China
aimed
to
produce
two
rms
ranking
in
the
top
10
players
worldwide.
Electric
batteries,
motors,
and
other
components
should
have
reached
an
international
level
of
quality
and
repr
esent
80 percent of China’
s market. By
2025,
Chinese
EVs
rms
should
represent
80
percent
of
the
domestic
market,
and
two
homegr
own
companies
should
be
in
the
ranks
of
the
10
leading
rms
with
10
percent
of
their
total
sales
(State
Strategic
Advisory
Committee
2015).
The
electric
vehicle
industry
presents
an
inter
esting
example
of
China’
s
growing
prociency
in
the
production
of
electric
batteries
(ion-lithium
batteries),
with
CA
TL
being
the
most
well-known
success
case.
Founded
in
2011,
the
company
has
advanced
146
quickly
in
global
markets and
in
2021
it
accounted
for
more
than
32%
of
the
global
market
share
of
ion-lithium
batteries,
making
it
the
biggest
producer in the world (Sanderson 2022).
China’
s
domination
of
lithium batteries
for EVs
has
also
been
a
direct
product
of
gover
nment
policy
.
The
gover
nment
operated
a
“whitelist”
of
approved
domestic
battery
manufactur
ers
which
were
the
only pr
oducers that
EV manufactur
ers could
use
if
they
wished
to
receive
the
gover
nment
subsidies
for
EVs.
This
policy
led
directly
to the
rise of
CA
TL
and
helped
BYD
transition
from
phone
batteries
to
auto batteries.
With Guoxuan,
these three ar
e the
second,
fth
and
ninth
largest
EV
battery
makers
in
the
world.
From
2014-2017,
CA
TL
’
s
sales
increased
at
a
compound
annual
gr
owth
rate
of
263 percent (Sanderson 2022).
The
case
of
BYD
Auto
is
important
and
needs
to
be
mentioned,
considering
it
overtook
T
esla’
s
position
as
the
biggest
market
share
in
electric
vehicles,
producing
cars,
trucks,
buses,
electric
bikes,
among
other
products.
BYD
has
been
founded
in
1995,
the
company
expanded
upon
the acquisition of
Qinchuan Automobile Company
in
2002
and
after
that
it
has
raised
HKD$
1.6
billion
in
the
Hong
Kong
Stock
Market.
The
rm’
s
electric
batteries
division,
called
Fin
Dr
eams,
currently
holds
third
place
among
the
biggest
battery
makers in the world, with a 13% market share.
The
rm
grew
very
rapidly
in
the
last
two
decades,
supported
by the
expansion of
China’
s consumer
market,
while
also
being
aided
by
the
intensive
industrial
policies
conducted
by
the
Chinese
state,
currently
holding
more
than
30
industrial
parks
across
six
continents.
Although
most
of
its
sales
are
focused on
Mainland China,
the rm
has been
expanding into
global markets,
with special
focus
on Europe. According to the
rm’
s
ocial website
it
had
sold
more
than
2.68
million
vehicles
(BYD,
2023) by September 2022.
By
2019,
local
rms,
including
JVs,
already
dominated
China’
s
EV
market
with
85
percent
market
share.
2
As
of
now
SAIC,
Geely
and
BYD
have
had
a
certain
degr
ee
of
success
in
their
internationalization
strategy
,
especially
exporting
to
European
markets.
Other
rms
such
as
BAIC
and
Chery
continue
to
be
suppliers
mainly
to
the
domestic
market.
There
are
also
smaller
brands
such
as
Nio
Inc.
and
Xpeng
which
are
trying
to
expand
internationally
.
In
fact,
SAIC-GM-Wuling
(a
joint
venture
with
General
Motors)
and
BYD
ranked third and
fourth in
the largest
sales of EVs
in
2021,
with
market
shares
of
10.5%
and
9.1%
respectively
(Kane
2022),
which
means
China
has
reached
the
goal
of
producing
two
major
international players in the sector
.
In
2021,
China
accounted
for
more
than
half
of
the
world’
s
global
sales
of
EVs.
However
,
the
structure
of
the
EV
market
in
China
is
still
fragmented
with
more
than
200
rms
producing
parts,
components
and
the
other
steps
in
the
EV
value
chain.
T
rends
suggest
that
ther
e
will
be
growing
competition
in
the
domestic
market
between
the
established
rms,
SAIC-GM-Wuling,
BYD,
Geely
,
and
newcomers
such
as
Nio
and
Xpeng
(Daxue
Consulting
2022).
Sanderson
(2022)
points
out
that
government
funding
and
subsidies
that
have
been
dir
ected
to
the
industry
since
2009
have
directly contributed
to
the
rise
of
new
rms
in
the
sector
.
While
the
building
of
large-scale
battery
makers
has
been
successful,
subsidies have
encouraged
both
lots
of
rm
entry
into
the
EV
market
and
allowed
too
many
of
them
to
continue
to
survive.
There
were
119
producers
of
EVs
in
2020.
W
ith
a
market
of
approximately
1.5
million
EVs,
each
producer
on
average
produced
12,600
vehicles,
far
below
the
necessary
scale
economies
(Kennedy
2020).
The
other
issue
is
that
quality
of
Chinese
EVs
still
lags
behind.
They
tend
to
export
only
to
developing countries. While BYD
sells mor
e units
than
T
esla,
Chinese
EV
rms
generally
sell
to
the
low and middle tiers of auto buyers. The Chinese
makers
comprise
80
percent
of
the
domestic
market,
which
at
3.3
million
cars
sold
in
2021
comprised
53
percent
of
global
sales
in
units.
In
the
same
year
China
accounted
for
35%
of
exported
electric
cars,
compared
with
25%
in
2021.
Europe
2.- McKinsey “Winning the Chinese BEV Market,” May 4, 2021.
147
Between
2005 and
2012 is
estimated
that
China’
s
total
FDI
toward
South
America
plus
Mexico
totaled
around
$63
billion,
while
between
2005-
2023
the
total
FDI
of
Chinese
rms
in
the
same
countries reached $212 billion.
Brazil repr
esented
just
over
one-thir
d
of
the
total,
with
$73.3
billion
worth of
Chinese investment
in 264
pr
ojects
(AEI,
2024).
Chinese
FDI
in
Latin
America
continued
to
grow
until
it
was
interrupted
by
the
social
and
economic
challenges
of
the
pandemic,
aggravated
by
China’
s
strict
lockdown
and
zero
COVID
policies. In
2020 and
2021,
Latin America
saw
a
downfall
of
the
total
amount
invested
by
China in the region.
However
,
the
investment
ows
grew
in
2022
and
2023
–
only
this
time,
the
funds
were
directed
toward
new
sectors
such
as
solar
,
wind,
and
hydropower
as
well
as
electric
vehicles
(EVs).
Mining
in
strategic
materials
such
as
lithium
and
rar
e
earth
minerals,
which
are
crucial
as
supplies
for
the
value
chain
of
many
advanced
technologies
involved in
decarbonization
is also
a
priority
.
Prominent
Chinese
rms
acting
in
these
new
subsectors
are
privately owned
and/or
mixed
capital
companies,
such
as
BYD
and
Great
W
all
Motors, for example (Rhodium Group, 2024).
In
Latin
America
in
2022-2023
the
general
trend
of
Chinese
investment
has
been
of
a
higher
number
of
smaller
projects.
This
means
a
shift
from
the
previous
trend
of
big
infrastructure
projects
under
the
Belt
and
Road
Initiative
(BRI),
such
as
State
Grid’
s
and
China
Three
Gorges’
multi-billion
investments
in
Brazil
and
Argentina,
for
example,
toward
mor
e
nimble,
numerous,
and
technologically
intensive
projects
(Kotz
and
Haro-Sly
,
2023).
Albeit
smaller
in
size,
these
new
projects ar
e directed toward strategic ar
eas.
remains
China’
s largest trade
partner for
both EVs
and
batteries.
In
2022,
the
share
of
EVs
made
in
China and sold
in the European market increased
to
16%,
up
from
about
11%
in
2021
(IEA
2022;
IEA, 2023).
4. AN OVER
VIEW ABOUT CHINESE INVESTMENTS
IN LA
TIN AMERICA
Analysts
have
noted
that
the
term
“New
Infrastructure,”
which
has
appeared
in
Chinese
media
and
policy
documents,
as
the
lexicon
designating
the
sectors
China
wants
to
develop
at
home
while
also
becoming
a
competitive
global
player
(Myers,
Melguizo
and
W
ang,
2024).
Information
technologies
linked
to
data
centers,
semiconductors,
and
articial
intelligence
are
important
focuses
of
policymakers
in
Beijing,
but
so
are
renewable
energy
generation
and
electric
vehicles.
T
echnology
is
a
key
aspect
in
China’
s
eorts
to
revive
its
domestic
economy
and
competing with the United States.
The
shift
in
for
eign
investment
policy
reects
the
changing
priorities
and
characteristics
of
the
Chinese
economy
.
Concepts
such
as
new
“quality
productive
forces,”
“small
but
beautiful,”
“indigenous
innovation,”
and
self-reliance
have
emerged
as
priorities
for
the
Chinese
state.
The
government
is
trying
to
reignite economic
growth
amid
the
diculties
and
slowdown
caused
by
an
aging
population,
high
youth
unemployment,
the
property
crisis
in
the
real
estate
sector
,
and
a
recovery
in
consumption
post-COVID
that
was
not
as
exuberant
as
Beijing
had
expected.
All
of
these
reect
in
Chinese
rms
investing
abroad,
which
ar
e
trying
to
nd
new
markets
and
trade
partners,
focusing
on
technology
and
innovation,
while
also
exporting
overcapacity
in
industries
where domestic
demand
is
falling,
as
the case
of
EVs (Myers, Melguizo and W
ang, 2024).
The
following
cases
of
FDI
in
dier
ent
countries
illustrate
the
broader
trends
mentioned
in
the
previous paragraphs. For example, in 2022, there
were
two
FDI
acquisitions
in
the
lithium
sector
in
Argentina,
made
by
Ganfeng
Lithium
and
Zijin
Mining
Group,
with
a
total
value
of
$1.7
billion.
148
Greeneld
investments
in
battery
factories
and
mining
by
Chinese
automobile
manufacturer
Chery
and
a
lithium
carbonate
factory
from
Liex,
a
subsidiary
of
Zijin
Mining
Group,
were
both
announced in Argentina in 2023 (AEI, 2024).
In
Chile,
the
Chinese
EV
manufacturer
BYD
announced
a
$290
million
investment
to
exploit
lithium.
In
addition
to
that,
automobile
manufacturer
Geely
acquired
seven
plants
globally
,
including
one
in
Cordoba,
Argentina,
by
forming
a
joint
venture
with
Renault.
The
plants
make
aluminum
parts
for
gearboxes
that
will
be
used
in
its
subsidiary
Horse,
which
produces
gearboxes
at
other
plants
in
Chile
and
Brazil
and
supplies
companies
like
Renault,
Dacia,
Nissan,
and
Mitsubishi (China
Daily
,
2024).
Chile
produces
circa
32%
of
the
world’
s
lithium
and
repr
esented
89%
of
China’
s
imports
of
lithium
carbonate
in
2022,
reinfor
cing
the
country’
s
strategic
position
vis-à-vis the Asian partner
. Moreover
,
much of the
lithium that
is pr
oduced in
Argentina goes
through
Chile
to
be
exported
to
China,
reinfor
cing
its
competitive prole due to logistics.
Chile
has
developed
a
national
strategy
to
try
to
move
up
the
lithium
value
chain,
adding
value
to
the sector instead of just extracting and exporting
the
mineral.
Although
in
its
initial
stages,
Boric’
s
industrial
policy
will
focus
on
public-private
partnerships
to
try
to
maintain
stages
of
the
adding
value
inside
the
country’
s
territory
.
It
will
also
establish
the
creation
of
a
public
company
focused
on
resear
ch
and
development
and
technology
projects
linked
to
mineral
sectors.
Moreover
,
Chile
also
detains
expr
essive
reserves
of
copper
,
which
is
also
used
in
technologies
linked
to
decarbonization
and
just
general-purpose
electronics
(Chile
National
Lithium
Strategy
,
2024).
As
of
this
moment
in
the
North
American
rm
Albermale
and
Chilean
private
rm
SQM
are
the
main rms acting in
Chile’
s lithium sector
. The rm
T
ianqi
Mining
acquired
a
22%
stake
at
SQM and
if
BYD’
s
pr
oject
does go
through, it
would
promote
a greater pr
esence of Chinese rms in Chile.
In
Brazil,
there
was continued
investment by
Great
W
all
Motors,
which
in
2021
bought
a
Mercedes-
Benz
factory in
São
Paulo
state aiming
to
produce
electric
vehicles
and
batteries.
The
company
continues
building
production
capacity
with
an
investment
plan
of
4
billion
Brazilian
real
($776
million)
between
2022-2025.
The
automaker
will
manufactur
e
electric
cars
and
hybrids,
in
addition to developing research and development
projects.
V
olvo,
a
Swedish
automaker
whose
main
shareholder
position
has
been
acquir
ed
by
the
Chinese
rm
Geely
,
made
an
investment
of
881
million
real
in
its
factory
in
Paraná
state,
Brazil.
These
funds
will
be
used
for
the
development
of
products and services focusing on electromobility
and
decarbonization
and
ar
e
part
of
a
greater
investment
cycle
that
is
projected
to
r
each
1.5
billion yuan between 2022-2025 (Reuters, 2024).
BYD
is
investing
1.1
billion
r
eals
in
the
Brazilian
state
of
Bahia
to
produce
chassis
for
electric
buses
and
trucks,
manufacture
electric
and
hybrid
passenger
vehicles (with
an initial
projected
capacity
of
150,000
units
annually),
as
well
as
processing
lithium
and
iron
phosphate
in
Brazil,
that
will
later
be
exported
to
global
markets.
In
July
2023,
the
project
was
conrmed.
BYD
will
take
over three factories
formerly owned
by U.S.-
based
Ford
Motors
in
the
Bahia
state,
which
left
the
country
in
2021
after
more
than
50
years
of
operations
in
Brazil.
BYD
expects
to
start
production
in
Brazil
in
the
second
half
of
2024
and
has
already
partnered
with
local
energy
rm
Raizen
to build
charging network
stations in
eight
large metropolises in the country (Reuters, 2024).
The
only
Chinese
battery
manufacturing
plant
in
South
America
is
owned
by
BYD
and
it’
s
located
in the
Northen r
egion of
Brazil called
Manaus. The
production
started
in
2020
and
there
are
still many
improvements
that
could
be
made
possible
by
industrial
policies
and
local
suppliers’
upgrading,
seeing
that
the
Manaus
plant
acts
mostly
in
the
assembly
of
batteries,
a
lower
value-added
activity
if
compared
to
the
actual
manufacturing
of
key
parts
and
components.
As
BYD’
s
plants
in
Bahia
start
their
production
in
2025,
there
will
possibly
be
a
gr
eater
demand
for
batteries
and
possibly
greater
investments
in
that
sector
within
Brazil.
However
,
since
the
country’
s
consumer
market is
very
expr
essive,
with
a population
exceeding
215
million
people, and
sales
of
automobiles reaching
2.3 million
in 2023
(CSIS, 2024),
it is still
uncertain
whether
or
not
BYD’
s
battery
factories
will
serve
149
simply to
supply for the
local market
and/or if they
will
also
be
used
for
exports
to
other
countries,
potentially
the
MERCOSUR
partners
with
whom
Brazil
has
a
preferential
agreement
on
common
taris
based
on
the
amount
of
local
added
value
in the end-product, for example.
In
Peru,
Zijin
Mining
has
just
announced
a
US$
250
million
investment
project
for
metal
extraction,
which
is
still
at
the
planning
stage. Regarding
the
case
of
Bolivia,
the
country
lost
possible
funding
opportunities due to political and institutional
instability
.
Only
very
r
ecently
,
in
June
and
July
of
2023
Chinese
companies
began
to
invest
there
again,
with
two
pr
ojects
focused
on
the
extraction
of
lithium.
The
rst
amounting
to
US$
1.38
billion,
to
exploit
the
salt
ats
of
Uyuni
and
Copasa
in
partnership with
local
rm
Y
acimientos
de Litio Boliviano (YLB), and
led by China’
s CA
TL,
the
battery
rm
previously
mentioned.
CA
TL
has
66% of the
shares in this
project.
The second
one
was
conducted
by
China
Inter
national
T
rust
and
Investment (CITIC)
amounting to
US$ 400
million,
which
is
still
underway
(Benchmark
Minerals,
2024; CSIS, 2024).
Regarding
its
position
in
Latin
America,
in
summary
,
China’
s
state-owned
enterprises
were
the rstcomers
to the region in the 2000’
s,
building
the
basis
in
oil
and
gas
and
agriculture
investments,
aiming
to
access
natural
resour
ces
needed
for
maintaining
the
growth
of
China’
s
economy
,
through
mergers
and
acquisitions.
After
2012,
came
a
dierent
phase
of
FDI,
in
which
state-owned
rms
such
as
State
Grid
and
China
Three
Gorges
made
multibillion
dollar
investments
in
generation,
transmission
and
distribution
of
electricity
,
which
were
then
considered
as
being
part
of
China’
s
foreign
policy
of
economic
integration
known
as
the Belt
and Road
Initiative. In
this period
there
was
greater
presence
of
China’
s
banks
in
this
process,
such
as
the
China
Export
Import
Bank (EXIMBANK)
and
the
China
Development
Bank,
tr
ends
that
have
been
going
down
since
2019
and,
since
then,
rms
have
taken
the
lead
through
greeneld
and
br
owneld
FDI.
These
processes
allowed
for
Chinese
rms
to
learn
about
the
local
realities
as
well
as
the
institutional,
regulatory
and
labor
standards
in dierent countries.
5. CONCLUDING REMARKS
Regarding
the
development
of
technology
and
domestic
manufacturing
capabilities
in
China,
industrial
policy
was
essential
for
the
growth
of
the
EVs
market
since
2009,
when
the
Gover
nment
started
acting
more
directly
in
the
industry
through
two
dierent
measures:
on
the
demand
side,
government
procur
ement
for
taxis,
buses
and
public
transportation
helped
to
boost
up
the
market
and
subsidies
for
buyers wer
e
also
oered.
On
the
other hand,
in the
supply side,
protectionism was
used
to
ensure
that
national
companies
would
be
the
main
beneciaries
of
government
funds.
Subsidies
were
given
to
companies
that
produced
cars
domestically
,
but
even
foreign
rms
were
obliged
to
use
components
made
by
Chinese
rms
such
as
the
batteries
made
by
CA
TL
and
BYD if they wanted to sell to Chinese customers.
After
Covid,
private
companies
in
the
EVs
and
green
energy
sector
have
been
investing
abroad
in
sectors
that
allow
for
greater
prots,
and
which
are
mor
e
intensive
in
technology
.
As
was
mentioned
befor
e,
these
changes
in
the
prole
of
FDI
are
connected
to
the
domestic
challenges
and
the
qualitative
transformation
of
China’
s
domestic
economy
,
which
is
inextricably
linked
to
the
processes
of
upgrading,
innovation
and
technological
development.
In
this
sense,
as
China’
s
economy
transitions
towards
dierent
sectors
such
as
A.I,
biotechnology
,
pharmaceuticals,
solar
and
wind
power
generation
and
equipment,
electric
vehicles,
among
others,
150
so
changes
the
pr
ole
and
strategy
of
Chinese
rms
abr
oad.
The
r
ecent
changes in
the
pr
ole
of
FDI
in Latin
America
is part
of
the
new chapter
of
Chinese
rms
going global.
It may
yet
be
too
soon
to
arm,
but
evidence
point
to
the
articulation
of
a
regional
value
chain in
green
technologies led
by
Chinese
rms,
with Chile
and Argentina
producing
strategic
minerals
and
batteries,
for
example,
while
manufacturing
capacity
for
EVs
and
solar
panels is located
in Brazil, which could serve as
a
hub for exports to the region as a whole.
The
key
ndings
are
preliminary
,
but
we
infer
that
there
is
a
new
phase
of
Chinese
engagement
in
Latin
America
post-Covid,
with
a
change
in
the
prole
of
FDI:
1)
relevant
investments
are
now
conducted
not
only
thr
ough
state
owned
enterprises,
but
increasingly
made
by
private
rms,
especially
when seeing
outside of
legacy sectors;
2) sectors of destination are slowly changing fr
om
oil, gas and
agriculture towar
ds renewable energy
sources,
electric
vehicles
and
mining
of
strategic
minerals
such
as
lithium
and
rare
earth
minerals;
3) the
ows of investments
ar
e smaller
in the total
quantity
,
but
there
is
a
higher
number
of
projects
in
the
region
overall;
4)
the
FDI
projects
are
increasingly
directed
in
knowledge/technologically
intensive
sectors,
instead
of
capital
intensive
ones,
as
was
the
case
in
traditional
(legacy)
sectors
(such
as
electricity
generation
and
oil)
of
the
pre
2019 phase, which was the year of transition with
the rst EV
projects
being r
olled out and the
post-
Covid
period
being
the
consolidation
of
this
new
phase,
which
is
also seeing
a
gradual
increase of
greeneld
investments
as
a
mode
of
entry
,
vis-a-
vis
a pr
edominance of
mergers
and acquisitions
in
the early to mid-2010’
s.
In
conclusion,
in
a
context
of
higher
taris
and
protectionism
being
imposed
on
Chinese
products
in
developed
country
markets
such
as
Europe
and
the
US,
China
will
continue
to
focus
on
the
inter
national
expansion
of
its
companies
in
the
Global
South,
and
Latin
America
is
gaining
relevance.
Faced
with
this
situation,
Latin
American
countries must
develop
their
own plans,
industrial
policies
and
strategies
for
technological
upgrading,
innovation
and
production
of
higher
value-added
goods.
Chinese
capital
can
be
seen
as
a
positive
factor
for
the
region’
s
development
processes,
as
long
as
the
respective
countries
take
control
of
their
own
macroeconomic
and
institutional environments.
T
rends
indicate
that
there
is
a
window
of
possibilities and opportunities open in this regard,
especially
in
sectors
linked
to
decarbonization,
renewable
energy
,
electromobility
and
gr
een
technologies.
However
, the
countries
in
the
region
must
focus
on
developing
their
industrial
policies
and
innovation
strategies,
as
well
as
maybe
requiring
technology
transfer
agreements
linked
to
some
of
these
FDI
projects.
In
addition
to
that,
investments
in
education
and
integration
of
local
labor
into
these
initiatives
could
potentialize
spillover
eects
for
upgrading.
Conversely
,
the
risk r
emains that Latin America could go
down on
a
path
of
dependency
and
continuing
to
export
natural
resources
and
commodities,
in
exchange
for
industrial
goods,
a
historical
patter
n
that
has
deleterious
eects
on
local
societies
in
terms
of
sustainable development.
151
6. REFERENCES
American
Enterprise
Institute
(2024).
China
Global
Investment
T
racker
Database.
Available
at:
https://www
.aei.
org/china-global-investment-tracker/.
Arrow
,
Kenneth
(1962).
“Economic
Welfare
and
the
Allocation
of
Resources
for
Invention.”
In
The
Rate
and
Direction
of Inventive Activity: Economic and Social Factors, pp. 609-625. Princeton, NJ: Princeton University Press.
Benchmark Minerals (2024). Bolivia chooses Chinese consortium led by CA
TL for $1 billion lithium investment.
Bennett,
Andrew
.
Case
Study
Methods:
design,
use
and
comparative
advantages.
In.
Sprinz,
Detlef,
wolinsky
,
Y
ael.
Cases,
Numbers,
Models:
Inter
national
Relations
Research
Methods.
University
of
Michigan
Press,
2004,
Cap. 2, p. 19-55.
Center for
Strategy
,
Intelligence and Strategic
Studies (CSIS) (2024).
Mazzocco, Ilaria. Driving
Change: How EVs
Are
Reshaping
China’
s
Economic
Relationship
with
Latin
America.
Availabnle
at:
Driving
Change:
How
EVs
Are
Reshaping China’
s Economic Relationship with Latin America
China
Daily
(2023).
Chinese
EV
makers
set
eyes
on
Latin
America.
A
vailable
at:
https://global.chinadaily
.com.
cn/a/202308/31/WS64efbfdba31035260b81f161.html
Chile National Lithium Strategy (2024). Government of Chile. Available at: https://www
.gob.cl/litioporchile/en/
Daxue Consulting Group. 2022.
“China’
s
EV market: a rising
global leader in EV
technology”. August 10. https://
daxueconsulting.com/electric-vehicle-market-in-china/
Department
of Commerce
of
the United
States.
2022.
CHIPS and
Science
Act.
https://www
.commerce.senate.
gov/services/les/1201E1CA-73CB-44BB-ADEB-E69634DA9BB9
Dezan Shira
Associates. 2022.
“China Considers Extending
its EV
Subsidies to
2023”. China
Brieng. September
29. https://www
.china-brieng.com/news/china-considers-extending-its-ev-subsidies-to-2023/
Haggard (2018) Developmental States. New Y
ork: Cambridge University Press.
He,
Hongwen;
Fengchun
Sun,
Zhenpo
W
ang,
Cheng
Lin,
Chengning
Zhang,
Rui
Xiong,
Junjun
Deng,
Xiaoqing
Zhu,
Peng
Xie,
Shuo
Zhang,
Zhongbao
Wei,
W
anke
Cao,
Li
Zhai.
2022.
China’
s
battery
electric
vehicles
lead
the
world: achievements
in
technology system
architectur
e
and
technological breakthroughs, Green Energy
and
Intelligent
T
ransportation,
V
olume
1,
Issue
1,.
Disponível
em:
https://www
.sciencedirect.com/science/article/pii/
S2773153722000202.
Huang,
Y
asheng.
2008.
Capitalism
with
Chinese
Characteristics:
Entrepr
eneurship
and
the
State.
Cambridge:
Cambridge University Press
International
Energy
Association
(IEA).
2022.
Global
EV
Outlook
2022:
securing
supplies
for
an
electric
future.
Paris: France. IEA Publications.
International Energy Association (IEA). 2023.
Global EV Outlook
2023: catchinjg-up with climate
ambitions. Paris:
France. IEA Publications.
Johnson,
Chalmers
(1984).
“The
Developmental
State:
Odyssey
of
a
Concept,”
in
Meredith
W
oo-Cumings,
ed.,
The Developmental State (Ithaca, Cornell University Press.
Kane,
Mark.
2022.
“Global
sales
of
Electric
V
ehicles
Q1-Q4
2021”.
Inside
EVs.
February
02.
https://insideevs.
com/news/564800/world-top-oem-sales-2021/
Kawase,
Kenji.
2022.
“Made
in
China
2025’
thrives
with
subsidies
for
tech,
EV
makers”.
Nikkei
Asia.
July
22.
https://asia.nikkei.com/Business/Business-Spotlight/Made-in-China-2025-thrives-with-subsidies-for
-tech-EV
-
makers
Kennedy
, Scott.
2020. “The Coming NEV
W
ar? Implications
of China’
s
Advances in Electric V
ehicles”. Center for
Strategic
and
International
Studies
(CSIS)
Brief.
November
18.
https://www
.csis.org/analysis/coming-nev-war
-
implications-chinas-advances-electric-vehicles
152
Kotz,
Ricardo;
Haro-Sly
,
Maria
(2023).
China’
s
economic
diplomacy
in
the
context
of
the
far
-right
government’
s
neoliberal
nationalism:
the
case
of
Brazil’
s
energy
sector
.
In.
New
nationalisms
and
China’
s
Belt
and
Road
Initiative:
exploring
the
transnational
public
domain.
ed.
/
Julien
Rajaoson;
R.
Mireille
Manga
Edimo.
Palgrave
Macmillan,
2022. p. 195-215.
Lee,
Keun
(2019).
The
Art
of
Economic
Catch-up:
Barriers,
Detours
and
Leapfrogging
in
Innovation
Systems.
Cambridge, UK and New Y
ork, NY
: Cambridge University Press.
Lee,
Keun
(2021).
China´s
T
echnological
Leapfrogging
and
Economic
Catch-up:
A
Schumpeterian
Perspective,
Oxford University Pr
ess.
Lundvall, Ben-Adtke;
Borras, Susana.
Science, T
echnology and
Innovation policies.
In. Fagerberg,
Jan, Mowery
,
David
C.
and
Nelson,
Richard
R.
(2005)
(eds):
Innovation
Handbook.
(Oxfor
d:
Oxford
University
Pr
ess).
Chapter
22. Pages 599-631.
Mazzucatto,
Mariana
(2014).
The
Entrepreneurial
State:
Debunking
Public
vs.
Private
Sector
Myths.
Anthem
Pr
ess.
Myers,
Margaret;
Melguizo,
Ángel;
and
Yifang
Wang
(2024).
New
Infrastructure:
emerging
T
rends
in
Chinese
Foreign Dir
ect Investment in Latin America and the Caribbean. United States: The Dialogue edtior
.
National
Congress
of
the
People’
s
Republic
of
China.
Outline
of
the
People’
s
Republic
of
China
14th
Five-Y
ear
Plan
for
National Economic
and
Social
Development
and
Long-Range
Objectives for
2035.
T
ranslation
available
at: CSET Original T
ranslation: China’
s 14th Five-Y
ear Plan (georgetown.edu)
Naughton,
Barry
(2021).
The
Rise
of
China’
s
Industrial
Policy
from
1978-2020.
Mexico:
Universidad
Autónoma
de Mexico,
Centr
o de
Estudios sobre China. Available at:
https://dusselpeters.com/CECHIMEX/Naughton2021_
Industrial_Policy_in_China_CECHIMEX.pdf.
North,
Douglas
(1991),
Institutions,
Institutional
Change
and
Economic
Performance
(Cambridge:
Cambridge
University Press).
Perez,
C.,
and
Soete,
L.
(1988).
Catching
up
in
technology:
entry
barriers
and
windows
of
opportunity
.
In T
echnical
Change and Economic Theory
, pp. 458-479, London: Francis Pinter
.
Reuters (2024). China automaker BYD to invest $620 million in Brazil industrial complex.
Rhodium
Group
(2024).
Pole
Position:
Chinese
EV
Investments
Boom
Amid
Growing
Political
Backlash.
United
States: Rhodium Group.
Romer
, Paul (1990). Endogenous technological change. The Journal of Political Economy
, V
ol. 98, No. 5.
Sanderson, Henry
. 2022. V
olt Rush: W
inners and losers in the race to go gr
een. One World Publications.
Schumpeter
,
Joseph
(2008).
Capitalism,
Socialism,
and
Democracy
.
Harper Per
ennial
Modern Classics;
unknown
edition (November 4, 2008).
Solow
,
Robert
(1994). Perspectives
on
gr
owth
theory
.
Jour
nal
of
Economic Perspectives
—
V
olume
8, Number
1 — Winter 1994 — Pages 45. Available at: https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.8.1.45
Stiglitz,
Joseph; Gr
eenwald, Bruce
(2018). Cr
eating a
Learning Society
. United
States: Columbia
University Pr
ess,
First Edition.
W
ang,
Dan
(2023).
China’
s
Hidden
T
ech
Revolution:
how
Beijing
Threatens
U.S.
Dominance.
For
eign
Aairs.
Available at: China’
s Hidden T
ech Revolution: How Beijing Threatens U.S. Dominance (for
eignaairs.com)
Y
ang
Andrew
Wu,
Artie
W
.
Ng,
Zichao
Y
u,
Jie
Huang,
Ke
Meng,
ZhangY
.
Dong.
2021.
A
review
of
evolutionary
policy
incentives
for
sustainable
development
of
electric
vehicles
in
China:
Strategic
implications,
Energy
Policy
148(B).
153
Uma análise sobr
e a inuência
geopolítica da transição ener
gética
na cadeia de valor global de materiais
críticos
1.-bruna.targino@ppe.ufrj.br
2.- gulelmo@yahoo.com.br
Bruna T
argino
1,
Paulo Gulelmo Souza
2
Recibido: 17/11/2024 y Aceptado: 13/12/2024
154
155
A
medida
que
el
mundo
avanza
hacia
la
transición
energética,
la
demanda
por
materiales
críticos
aumenta
signicativamente debido
a la
necesidad de
nuevas
tecnologías con
baja huella
de carbono.
Así,
la
producción
y
el
procesamiento
de
minerales
y
metales
altamente
concentrados
geográcamente,
considerados
críticos,
representan
una
dinámica
geopolítica
compleja
de
escasez
y
abastecimiento.
En
este
sentido,
el
presente
artículo
discute
la
relación
entre
producción
y
procesamiento
de
materiales
considerados
críticos
con
el
n
de
analizar
la
concentración
del
mercado
de
estos
materiales
en
todo
el
mundo.
Para
ello,
se
utiliza
el
Índice
de
Herndahl-Hirschman
(IHH)
para
evaluar
el
grado
de
concentración
de
los
materiales
y
,
en
consecuencia,
la
producción
de
nuevas
dependencias
económicas
y
geopolíticas. Este
análisis busca
identicar riesgos
asociados
con
la pr
oductividad y
la
concentración
de estos recursos, esenciales para la transición energética.
As the world moves towards r
enewable energy sources, the demand for critical materials increases
signicantly
due
to
the
need
for
new
low-carbon
technologies.
In
this
context,
this
article
discusses
the association between production and pr
ocessing of materials considered critical in order to analyze
their market concentration ar
ound the world. For this purpose, the Herndahl-Hirschman Index
(HHI) is
used to assess the degree of concentration of these materials and, consequently
, the production of new
economic and geopolitical
dependencies. This analysis aims
to identify the challenges associated
with
the lack and concentration of these resour
ces, which are essential for the energy transition.
P
ALABRAS CLA
VE:
T
ransición energética, Minerales críticos, Índice de concentración
KEYWORDS:
Energy transition, Critical minerals, Concentration index
Resumen
Abstract
156
1. INTRODUÇÃO
Para
alcançar
as
metas
climáticas
estabelecidas
no
Acordo
de
Paris,
a
descarbonização
de
diversos
setores
como
transporte,
energia
e
a
economia
global,
como
um
todo,
tor
nou-se
uma
prioridade
para
os
gover
nos
(Hache,
Gondia
Seck
& Guedes,
2023). À medida
que o mundo avança
para o uso de energias renováveis e de tecnologias
com
menor
pegada
de
carbono,
surgem
novos
desaos
associados
ao
aumento
da
demanda
por
materiais
essenciais
para
a
transição
energética
(IRENA, 2021).
Nesse contexto,
há
um
objetivo
em
comum:
a
reestruturação
de
sistemas
energéticos,
visando
a
produção
de
energia
limpa,
com
o
uso
e
desenvolvimento,
por
exemplo,
de
painéis
solares
e
baterias
para
veículos
elétricos
(Greim et al., 2020).
Ao
longo
da
história,
o
cenário
geopolítico
mundial
esteve
associado
à
concentração
de
reservas
de
petróleo,
onde
os maior
es
produtores
possuíam
vantagens
estratégicas
sobre
a
cadeia
de
suprimentos
(Månberger
&
Johansson,
2019).
A
partir
da
ascensão
das
energias
renováveis,
a
produção
e
o
processamento
de
minerais
e
metais altamente
concentrados geogracamente,
considerados
críticos,
r
epresentam
uma
dinâmica
geopolítica
complexa
de
escassez
e
abastecimento
(Månberger
&
Johansson,
2019).
Essa
mudança
sugere
que
países
com
grandes
r
eservas
e
com
grande
capacidade
no
reno
desses
minerais
críticos
podem
emergir
enquanto
ator
es
estratégicos
na
geopolítica
global,
inuenciando
não
apenas
o
mercado,
mas
também
as
cadeias
de
valor
associadas
à
transição energética.
Nesse
sentido, o
objetivo deste
estudo é
analisar
como
a
transição
energética
afeta
o
mercado
de
materiais
críticos,
considerando
a
distribuição
de
reservas
desses
materiais,
assim
como
seu
processamento
ao
redor
do
mundo.
Isto
é,
avaliar
se
a
distribuição
global
desses
materiais
repr
esenta
uma
relação
de
dependência
que
pode
ser utilizada com objetivos geopolíticos,
visto que
são
considerados
materiais
críticos.
Para
tanto,
utiliza-se
o
Índice
de
Herndahl-Hirschman
(IHH)
a
m
de
avaliar
o
grau
de
concentração
tanto
das
r
eservas
quanto
do
processamento
desses
materiais.
Na
primeira
seção
deste
estudo,
apresenta-
se
a
breve
discussão
em
torno
do
conceito
de
reserva
e
recurso
de
materiais
críticos
diante
da
transição
energética,
assim
como
discutir
a
demanda
por
esses
materiais.
Em
seguida,
descreve-se a abordagem metodológica utilizada
para
atingir
os
objetivos
descritos
anteriormente.
O
IHH
foi
aplicado
aos
seguintes
produtos:
níquel,
lítio,
cobalto
e
cobre.
Por
m,
apresenta-se
uma
discussão
em
torno
dos
resultados
obtidos
para
cada
um
dos
materiais
críticos
avaliados,
baseando-se
no
índice
IHH.
Essa
análise
discute
a
relação
da
concentração
da
produção
dos
materiais
selecionados
e
o
seu
processamento,
a
m
de
identicar
quais
países
se
destacam
na
cadeia
de
valor
e,
consequentemente,
sua
inuência geopolítica sobre o setor
.
157
2. MA
TERIAIS CRÍTICOS P
ARA TRANSIÇÃO ENERGÉTICA:
UMA DISCUSSÃO SOBRE RECURSOS E RESER
V
AS
Ao
longo
da
história,
a
transição
para
outras
font
es
de
energia
est
eve
as
sociada
à
dem
anda
por
materiais
(
Zo
tin
,
Roche
do
&
Szklo
,
202
3)
.
À
medida
que
a
expl
oração
dos
minerais
avançou,
t
ornou-se
possí
v
el
d
esenv
o
lv
er
n
o
vas
aplicaçõe
s
e
melhora
r
o
de
sempenho
técnic
o
de
di
v
ersos
produtos
(National
Re
search
Council,
2008)
.
Desde
a
transição
do
car
vão
para
o
pet
róleo,
a
expansão
das
indústrias
e
o
surgime
n
to
de
nov
as t
ecnologias possibilitaram o sur
giment
o de
sistemas en
ergét
icos
(F
ouquet, 2009)
.
Durante
a
Revolução
Industrial,
a
máquina
vapo
r e
a
expansão
das ferro
vias aument
aram a
d
e
m
a
n
d
a
p
o
r
a
ç
o,
c
o
b
r
e
e
o
u
t
r
o
s
m
i
n
e
r
a
i
s
(
Ya
n
g
e
t
a
l
.
2
021).
O
ac
e
s
s
o
às
r
e
s
e
r
v
a
s
d
e
c
a
r
v
ã
o
e
à
s
t
ecnologias
embutidas
nesse
pr
ocesso
também
c
o
n
t
r
i
b
u
í
r
a
m
p
a
r
a
q
u
e
a
I
n
g
l
a
t
e
r
r
a
o
b
t
i
v
e
s
s
e
u
m
a
posição
de
prestígio
ao
longo
do
século
XIX,
consolidando-se
como
uma
pot
ência
industrial
e
econô
mica
(Barak
20
1
5)
.
Da
mes
ma
f
orma,
mot
o
r
es
a
combustão
interna,
automóv
eis
e
petr
oquímicos
impulsionaram
a
expansão
da
i
n
d
ú
s
t
r
i
a
d
o
p
e
t
r
ó
l
e
o
(
G
r
o
ß
e
t
a
l
.
,
2
0
2
2
)
.
O
a
c
e
s
s
o
a
combustív
eis
fósseis
conduziu
grand
e
par
te
da
riqueza
de
paíse
s
como
Estados
Unidos
e
a
antiga
União
S
o
viética
durante
o
sécul
o
X
X
(
Criek
emans, 2
023
)
.
Diante
desse
cená
rio
,
a
ascensão
de
energia
s
renová
veis
na
atual
transição
energética
reitera
o
de
bat
e
sobre
a
relevância
da
inov
ação
e
dos
avanços
t
ecno
lógicos
no
me
r
cado
de
e
nergia
e
suas
dinâmica
s
geopolí
t
icas
(Su
et
al
.
,
202
1
)
.
Novas
rotas
come
rciais
e
uma
maior
dema
nda
por
mat
ér
ias
-primas
considerad
as
relev
ant
e
s
para
fabri
cação
de
tecnologia
s
de
energia
renová
vel
intensica
m
a
c
oncorrência
para
contr
olar
det
erminados
mat
eria
is
,
considera
dos
estrat
égicos
para
ga
rantir
a
transição
(Hatipoglu,
Al
Muha
nna
&
Er
d
202
0)
.
Ao
mes
mo
tempo,
as
áreas
de
produção
de
mat
eriai
s
e
minerais
crí
t
icos
também
ex
erce
m
sua
i
nuência
no
mercado
de
energia
de
modo
que
países
produtor
es
e
consumidores
enfren
tam
riscos
ge
opolít
icos
associados
à
de
pendência
d
e
materiais
(Månbe
r
ger
& Johanss
on 20
1
9)
.
A
disponibilidade
desse
s
minerais
e
ma
t
eriais
na
natureza
para
futura
ex
tr
ação
p
ode
ser
classicada
como
r
ecursos
ou
r
eser
vas,
dependendo
do
grau
de
conhecimento
g
eológico
,
maturidade
tecnológ
ica
e
nível
de
cer
t
eza
sobre
a
viabilidade
c
omercial
para
e
xplorá-los
(Lundaev
et
a
l
.
,
202
3)
.
A
ja
zida
de
minerai
s
cuja
extração
é
econômica
e t
ecnologicame
n
te
viá
vel
é
d
enominada
como
res
er
v
a
(Roon
wal,
20
1
9)
.
Esses
aspectos
fundamentais
diferenciam
as
reser
vas
dos
recurso
s
,
q
ue
cons
ist
e
m
na
d
i
s
p
os
i
ç
ã
o
de
m
in
e
r
a
i
s
o
u
m
a
te
r
i
a
i
s
al
o
c
a
d
o
s
n
a
n
a
t
u
r
e
z
a
q
u
e
s
ã
o
i
n
a
c
e
s
s
í
v
e
i
s
d
e
v
i
d
o
a
q
u
e
s
t
õ
e
s
econômicas,
t
ecnológicas
e
ambientais
(Nat
ional
Research Council
.
2
0
08
)
. É
necessário destacar
que
esse
s
co
nceitos
não
consistem
em
uma
cat
egorização
xa,
visto
que
sua
classicação
enquanto
recur
sos
ou
reser
vas
p
odem
var
iar
de
acordo
com
re
visões
técnicas
,
av
anços
t
ecnológicos ou
a
viabil
idade econômica de
sua
exploração (Lun
daev et al.
,
2
023
).
Da
mes
ma
forma,
a
compree
nsão
sobre
o
nível
de
cri
t
icidade
d
e
mat
er
iais
também
pode
modicar
-se
ao
longo
do
tempo
.
Na
literatura
,
o
t
ermo
d
e
cri
t
icidade
é
ampl
o
,
pois
sua
denição
é
reavaliada
à
m
edida
que
a
preocupaç
ão
e
m
torno
do
ace
sso
à
ofert
a
d
esses
m
a
teriais
é
crescente
,
devido
ao
aume
nt
o
da
dem
anda
(Greim
et
al
.
,
2
020
)
.
A
seguranç
a
do
abastecimento
d
e
materiais
críticos
está
associada
à
sua
abundância
e,
conse
quent
eme
n
te
,
à
sua
es
cassez.
Isso
o
c
o
r
r
e
p
o
r
q
u
e
a
c
o
n
c
e
n
t
r
a
ç
ã
o
d
a
o
f
e
r
t
a
d
e
s
s
e
s
mat
eriais,
e
m
determinadas
regiões,
classica-
os
como
críticos
devido
à
impor
tância
que
possuem
para
a
produção
de
t
ecnologias
limpas,
principalme
nt
e
em
um
cont
exto
de
transição
energética
(Lundaev et
al
.
,
2
02
3)
.
Países
dep
endentes
d
a
impo
rtaç
ão
de
m
a
teriais
se
esforçam
para
gara
nt
ir
o
fornecim
ent
o
d
e
158
energia e ou
tr
os recursos ne
cessár
ios para suas
economias.
P
a
ra
tant
o,
a
dotam
e
st
rat
égias
que
garantam
seu
acesso
aos
m
a
teriais
no
me
r
cado
int
ernacional
a
m
de
adquirir
mat
é
ria-prima
para
produção
de
tecnolo
gias
e
ssenciais
pa
ra
a
transição
ene
rgét
ica
(Su
et
a
l
.
,
20
2
1
)
.
Por
outro
lado
,
os
países
q
ue
c
ontr
olam
o
process
amento
também
utilizam
seus
recur
sos
para
aumentar
sua
inuênci
a
polí
t
ica
tanto
a
um
nível
regio
nal
quanto
globa
l
(Må
nberger
&
Johansson
20
1
9)
.
N
e
s
se
s
e
nt
i
do,
a al
t
a
c
o
n
c
en
t
ra
ç
ã
o da
o
c
or
r
ê
n
ci
a
O
desenvolvimento
de
baterias
de
lítio
dese
mpenha
um
papel
relevante
na
desc
arbonização
de
ce
rtos
set
ores
(Hach
e
,
Sokhn
a
Seck
&
Guedes
202
3)
.
O
utr
os
minerais
críticos
como
cobalto
,
níqu
el
e
cobre
também
são
relevantes
para
o
dese
n
volvime
n
to
de
redes
elétricas
,
ar
mazenament
o
de
ene
r
gia,
tecnologias
de
g
eração
fot
ovoltaicas
e
eóli
cas,
assim
como
sua
aplicação
em
outras
t
e
cnologias
de
baix
o
carb
ono
,
como
na
p
r
odução
de
hidrogê
nio
(Grandell
et
al.
,
20
1
6)
.
C
omo
um
dos
set
ore
s
deman
dant
e
s,
tem-se
o
me
rcado
de
baterias
recar
r
egáveis
de
íon
lítio
(IE
A,
20
1
8)
.
Em
2022
,
por
ex
e
mplo
,
a
v
enda
de c
arros el
é
tricos
ultrapassou
1
0
milhões
de
unidad
es,
enquant
o
a
ca
pacidade
dos
si
st
e
mas
de
a
rmazenam
ent
o
dobrou
no
de
depósi
t
os
mine
rais
e produç
ão d
e materiais
e
minerais críticos em poucos países pode implicar
na
depend
ência
de
tais
impor
tações
para
países
que
consomem
ess
es
materiais
(Korinek
&
Kim
20
1
1
).
A gura 1
abaixo ilustra
objetivamente
ess
a
q
u
e
s
t
ã
o:
Figura 1 -
Produção e pr
ocessamento de suprimentos para materiais críticos selecionados em 2022
(Ni-Níquel, Li-Lítio, Co-Cobalto e Cu-Cobre)
Fonte: Elaboração própria, com dados da WMD -World Mining Data (2024)
mesmo
períod
o
.
En
tre
20
1
7
e
202
2
,
o
setor
de
energia
foi
o
principal
fator
que
provocou
um
aumento
de
7
0%
na
dema
nda
por
co
balt
o
,
40%
por
níquel e
a uma
triplicação
na procura
por l
ítio
(IE
A, 20
23
)
.
159
A
gura 2
abaixo ilustra a cadeia de abastecimento de materiais críticos, considerando suas etapas
principais, que envolvem desde a prospecção mineral, extração das minas até o pr
oduto nal.
Fonte: IRENA (2023)
O
diagrama
ilustra
a
int
erconexão
entr
e
essas
diferentes
etapas.
Primeiram
ent
e
inicia-se
com
a
expl
oração
,
c
aract
eriz
ação
e
cl
assicaç
ão
enquanto
reser
va
at
é
culminar
na
etapa
de
lavra
mine
ral
.
Após
a
extração,
os
materiais
s
ão
transportados
para
plantas
de
processame
n
t
o
mineral,
ond
e
são
c
on
ver
tidos
em
minér
io
concen
tr
ado
,
que
variam
dependendo
da
mat
éria-
prima.
O
reno
inclui
a
s
fase
s
de
puricaç
ão
e
ultra
-pr
ocessamento
dos
minerais
,
crucial
par
a
retirar
a
s
impu
r
ezas
dos
metais,
preparando-
os
para
usos
industriais.
Cada
v
ez
mais,
há
uma
discuss
ão
sobre
a
recicl
agem
desses
produtos,
incluindo
determinados
resíduos
ge
ra
dos
ao
longo
de
seu
ciclo
de
vida.
A
gura
2
também
demonstra
a
dinâ
mica
de
interdependên
cia
na
cadeia
de
aba
st
e
ciment
o
de
mat
eria
is
cr
íticos
(IRENA, 202
3)
.
Nesse
c
ont
ex
t
o,
os
países
bus
cam
ga
rant
ir
não
apenas
o
abast
ecimento
,
mas
posicionar
-
se
como
p
la
yers
relev
antes
ne
sse
m
ercado
.
O
Depar
tam
ent
o
de
Defesa
nor
te-americ
ano
,
por
ex
e
mplo
,
conc
edeu
$
20
,6 mi
lhões
em 2023 para
avançar
na
exploração
de
níquel
em
Minn
esota.
Alé
m
disso,
o
país
investiu
$9
0
milhõ
es
pa
ra
apoi
ar
a
reabe
rtura
de
uma
mina
d
e
lítio
na
Ca
r
olina
do
Nor
te
para
ret
omar
as
o
perações
até
2035
(U
.S
.
Geol
ogical
Sur
vey
202
3)
.
Nos
últimos
an
os
,
a
China
também
d
emonst
rou
sua
preocupação
com
m
a
teriais
críticos.
O
país
investiu
em
inov
açõe
s
tecnológicas
para
descar
boni
zação
,
t
orna
ndo-se
um
d
os
at
ores
mai
s
relevant
e
s
no
registro
de
pat
entes
na
área
de
enge
nharia,
química
e
transpor
t
es,
de acordo
com
o rel
a
tório
Global
Innovat
ion
In
de
x
(
WIPO
,
202
3)
.
Ape
sar
de
ser
desaador
prever
a
demanda
futura
por
mat
er
iais
críticos,
especialment
e
a
longo
prazo
,
estima-se
que
as
transformaçõe
s
nece
ssária
s
para
a
transi
ção
ene
rgét
ica
produzam
novas
ro
tas
comerciais
e
outras
dinâmicas
ge
opolít
icas
(Hache, Sokhna Se
ck & Guedes 2023
)
.
160
3. MÉTODO
Nesta
seção,
descreve-se
a
abordagem
utilizada
para
analisar
como
a
transição
energética
afeta
o
mer
cado
de
materiais
críticos.
Para
tanto,
considera-se
a
concentração
da
produção
e
do
processamento
de
minerais
críticos
a
m
de
avaliar
se
sua
distribuição
geográca
repr
esenta
uma
relação
de
dependência
entre
países,
associada ao
uso desses materiais.
Optou-se por
analisar os
seguintes pr
odutos: cobre, lítio, níquel
e
cobalto.
Essa
escolha
deve-se
ao
uso
desses
materiais
na
produção
de
tecnologias
necessárias
para
a
transição
energética,
como
turbinas,
painéis
solares
e
baterias
para
veículos
elétricos.
Para
avaliar
o
grau
de
dependência,
utilizou-se
o
Índice
de
Herndahl-Hirschman
(IHH)
para
medir
a concentração desses mercados.
Ao
longo
deste
estudo,
analisou-se
a
produção
e
o
processamento
dos
materiais
críticos
selecionados
a
m
de
delimitar
o
foco
da
investigação,
que
se
propõe
a
avaliar
o
mercado
atual
de
materiais
–
desconsiderando
as
possibilidades
de
extração
futura
em sua
análise.
Essa
escolha
metodológica
pretende facilitar a análise da capacidade de
produção atual
do
mer
cado
de materiais
críticos,
visto
que
o
conceito
de
reservas
considera
o
total
estimado que
poderá
ser extraído
no
futur
o.
Portanto,
focou-se
na
análise
da
atividade
de
extração,
em
vez
de
considerar
as
reservas,
assumindo
que a
extração
de materiais
implica
na
disponibilidade de reservas para tal atividade.
Nesse
sentido,
a
primeira
seção
deste
trabalho
consiste
na
discussão
sobr
e
o
uso
do
conceito
de
recursos
e
r
eservas,
assim
como
discutir
a
demanda
por
esses
materiais.
Essa
etapa
baseia-se
na
r
evisão
da
literatura
sobre
o
tema,
abordando
o
funcionamento
do
mercado
de
materiais
críticos.
Em
seguida,
calcula-se
o
Índice
de
Herndahl-Hirschman
(IHH)
para
cada
produto
mencionado
anteriormente
desde
2020
até
2023
para
acompanhar
o
comportamento
do
IHH
ao
longo
do
tempo.
Isto
é,
compreender
a
dinâmica
do
mercado
de
materiais
críticos
tanto
na
extração
quanto
no
processamento.
Os
valores
considerados para
análise foram
retirados
do
relatório
Critical
Minerals
Market
Review
2023
produzido
pela
Inter
national
Energy
Agency
–
IEA,
publicado
em
2023.
Por
m,
discute-se
os
resultados
obtidos
ao
longo
da
realização
deste
estudo.
Índices
de
concentração
pr
etendem
indicar
o
grau
de
concorrência
em
determinado
mercado.
Quanto
maior o
valor
do índice
de
concentração,
menor
é
o
grau
de
concorrência
e
mais
concentrado
estará
o
poder
de
mercado
virtual
da
indústria
(Resende,
p.
55,
2013).
Nesse
sentido,
uma
maior
concentração
industrial
signica
que
há
desigualdades
nesse
mercado,
o
que
poderá
implicar em maior grau de concentração.
3.1. Índice de Concentração
Diferentes
métricas
podem
ser
utilizadas
para
medir
o
grau
de
concentração
de
mercado.
Dentre
as
mais
comuns,
destacam-se
as
razões
de concentração
(CR), que
pode ser
denida pela
Fórmula 3.1:
161
3.2. Dados utilizados
O
CR(k)
indica
a
parcela
que
as
rmas
possuem
em
determinado
mer
cado.
Por
exemplo,
CR
(5)
trata-se
das
5
maior
es
rmas
atuantes
(Naldi
&
Flamini,
2014).
Outra
ferramenta
analítica
é
o
Índice de
Herndahl–Hirschman (IHH),
que
busca
mensurar
a
dimensão
das
rmas
em
relação
à
indústria
que
atuam.
O
IHH,
portanto,
permite
Elevar
o
market
share
de
cada
empresa
ao
quadrado
permite
atribuir
um
peso
maior
às
empresas
relativamente
maiores.
Assim,
quanto
mais
elevado
for
o
IHH,
maior
será
a
concentração
em
determinado
mercado.
Isto
é,
haverá
menor
concorrência
entre
os
produtor
es
(Resende,
2013).
Como
o
IHH
trata-se
das
parcelas
de
avaliar
o
grau
de
concentração
do
mer
cado
de
determinado setor (Resende, 2013).
T
al expr
essão pode ser denida
pela Fórmula 3.2:
mercado,
há
três
faixas
para
avaliar
o
IHH
considerando
processos
de
fusões,
assim
como
os
valores
potenciais do
índice após
a fusão
entre
dois atores. Dessa forma, compr
eende-se que:
Diante
das
informações
apresentadas
até
aqui,
esta
seção
explora
os
dados
obtidos
sobr
e
a
concentração de
materiais críticos,
considerando
A
concorrência
de
grandes
depósitos
minerais
de
cobre
concentra-se
no
Chile,
Peru,
República
Democrática
do
Congo
(RDC)
e
na
China,
respectivamente.
A
China
desempenha
um
papel
dominante
no
processamento
de
cobre,
atuando
como
principal
país
neste
mercado.
De
modo
geral,
a
extração
manteve-se
estável
nos
T
abela 1:
Níveis de concentração de mercado.
Fonte: Oliveira (2023)
3.2.1. Cobre
últimos
anos,
com
o
aumento
da
participação
de
outr
os
países
tanto
na
extração
quanto
no
processamento.
Em
seguida,
o
Chile
e
o
Japão
também
se
destacam
em
relação
ao
processamento.
Nota-se
que, ao longo dos
anos, a extração de
cobre
nos
a
produção
e
o
processamento
de
cobre,
lítio,
níquel e cobalto
162
países
selecionados
mostrou-se
relativamente
constante.
O
mesmo
ocorre
no
pr
ocessamento,
com um crescimento menos acelerado em
2023.
A
China
está
aumentando
sua
capacidade
de
processamento
de
forma
consistente,
o
que
pode
indicar
um
maior
domínio
no
mer
cado
global
de
cobre
processado.
A
expansão
da
produção
no
Peru
e
RDC
sugere
um
aumento
na
importância
desses países
na cadeia
de
suprimento de
cobre.
A
tabela
2
e
3
abaixo
r
esumem
os
dados
de
produção
e
processamento
de
cobre
de
alguns
países.
T
abela 2:
Produção de cobre
T
abela 3:
Processamento de cobre
T
abela 4:
Produção de lítio
Fonte: IEA (2023)
Fonte: IEA (2023)
Fonte: IEA (2023)
Os
principais
países
que
possuem
depósitos
minerais
de
lítio
são
Austrália,
Chile,
China
e
Argentina.
A
Austrália
destaca-se
na
extração,
enquanto
a
China
domina
o
processamento.
Desde
2020,
a
capacidade
de
processamento
da
China
aumentou
de
265
kt
para
604
kt
em
2023,
ou
seja,
expandiu-se
signicativamente.
A
participação
de
outros
países
cresceu
nos
últimos
3.2.2. Lítio
anos,
o
que
pode
indicar
uma
maior
diversicação
na
capacidade
do
processamento
global
de
lítio,
embora ainda seja pouco expressiva.
A
tabela
3
e
4
abaixo
resumem
os
dados
de
produção
e
processamento
de
lítio
de
alguns
países.
163
T
abela 5:
Processamento de lítio
T
abela 6:
Produção de níquel
T
abela 7:
Processamento de níquel
Fonte: IEA (2023)
Fonte: IEA (2023)
Fonte: IEA (2023)
A
Indonésia
concentra
os
principais
depósitos
minerais
de
níquel
e
está
emergindo
como
principal
líder
no
pr
ocessamento,
aumentando
sua
capacidade
de
0.64
Mt
em
2020
para
1.67
Mt
em 2023.
Rússia e Canadá
também se
destacam
no
processamento
de
níquel,
mantendo-se
relativamente
estável
nos
últimos
anos.
Embora
a
China
seja
relevante
neste
mercado,
o
país
apresentou
um
declínio
na
sua
participação
no
processamento
de
níquel,
de
0.67
Mt
em
2020
3.2.3. Níquel
para
0.43
Mt
em
2023.
Essa
mudança
pode
signicar
um
maior
protagonismo
da
Indonésia
neste
mercado.
A
tabela
5
e
6
abaixo
resumem
os
dados
de
produção
e
processamento
de
níquel
de alguns países.
164
T
abela 8:
Produção de cobalto
T
abela 9:
Processamento de cobalto
Fonte: IEA (2023)
Fonte: IEA (2023)
A
República
Democrática
do
Congo
(DRC)
lidera
a
produção
de
cobalto,
apresentando
um
crescimento
de
103
kt
em
2020
para
168
kt
em
2023, consolidando-se
como o
principal pr
odutor
mundial.
A Indonésia,
embora
tenha
permanecido
relativamente
estável,
segue
como
um
dos
produtor
es mais r
elevantes. A categoria
que inclui
outros
países
mostrou-se
mais
expressiva
nos
Diante
das
informações
apresentadas
até
aqui,
esta seção
explora os resultados obtidos
sobr
e a
concentração de
materiais críticos,
considerando
a
produção
e
o
processamento
de
cobre,
lítio,
níquel e cobalto
As
guras
abaixo
repr
esentam
o
comportamento
do
IHH
para
cobre,
lítio,
níquel
e
cobalto,
respectivamente,
desde
2020
até
2023,
de
acordo
com
dados
estabelecidos
pela IEA
(2023).
3.2.4. Cobalto
últimos anos,
contribuindo para a
oferta global. A
China
destaca-se
no
processamento
de
cobalto,
crescendo
de
95
kt
em
2020
para
140
kt
em
2023.
A
tabela
7
e
8
abaixo
resumem
os
dados
de
produção
e
processamento
de
cobalto
de
alguns países.
4. RESUL
T
ADOS
4.1. Índice de Concentração
O
gráco
1
demonstra
que
o
cobalto
apresenta
a
maior
concentração no
que se
refere
à extração,
sugerindo
que
poucos
países
controlam
a
maior parte das minas em
operação de cobalto.
165
Apesar
de
uma
pequena
redução
em
2022,
o
mer
cado
de
cobalto
mantém-se
altamente
concentrado.
O
IHH
de
lítio
também
é
elevado
e
apresenta
uma
tendência
relativamente
estável.
Quanto
ao
níquel,
houve
uma
maior
concentração
O
gráco
2
compara
o
comportamento do
IHH
no
que se
refere
ao processamento
desses materiais
ao
longo
dos
anos.
O
cobalto
apresenta
o
maior
índice
de
concentração,
demonstrando
que
poucos
países
dominam o
seu
processamento. O
níquel,
embora
relativamente
menos
concentrado
em
2020,
apresentou
um
aumento
em
2023.
O
índice
Figura 3 -
IHH das reservas de materiais críticos
Figura 4 -
IHH do processamento de materiais críticos
Fonte: Elaboração própria.
Fonte: Elaboração própria.
principalmente
a
partir
de 2022.
Por
m,
o
índice
de
concentração
de
cobre
mantém-se
elevado,
apesar de uma queda em 2023.
de
concentração
de
cobre
é
elevado,
mantendo-
se
constante.
Por
m,
o
processamento
de
cobre
é
altamente
concentrado,
no
entanto,
manteve-se
relativamente
estável
durante
o
período analisado.
166
5. DISCUSSÃO DOS RESUL
T
ADOS E COMENT
ÁRIOS FINAIS
Ao
longo
da
realização
deste
trabalho,
analisou-
se
os
principais
players do
mercado
de
materiais
críticos,
considerando
a
distribuição
global
da
produção
e
do
processamento
de
níquel,
cobalto,
cobre
e
lítio.
Dado
que
as
energias
renováveis
compõem
as
estratégias
globais
para
alcançar
metas
de
descarbonização,
optou-se
por
investigar
se
o
aumento
da
demanda
por
materiais
críticos
pode
pr
oduzir
uma
relação
de
dependência
entre
países
que
dominam
essas
cadeias
de
valor
.
Essa
escolha
deve-se
à
importância
desses
materiais
para
produção
de
tecnologias
renováveis,
essenciais
para
a
transição
energética
e,
consequentemente,
para
que
os
países
sejam
capazes
de
cumprir
suas
estratégias
de
mitigação
e
adaptação
às
mudanças climáticas.
A
Agência
Inter
nacional
para
as
Energias
Renováveis
–
IRENA
declarou
que
é
pouco
provável
que
os
materiais
críticos
repr
oduzam
a
dinâmica
geopolítica
dos
combustíveis
fósseis,
alegando
que
as
reservas
desses
materiais são
abundantes
e
podem
ser
pr
ocessadas
em
diversos
locais
(IRENA,
2023).
No
entanto,
ao
avaliar
o
Índice
de
Herndahl-Hirschman
(IHH)
do
mercado
de
níquel,
lítio,
cobre
e
cobalto
no
período
entre
2020
e
2023,
constatou-se
que
tanto
a
extração
quanto
o processamento
dos materiais selecionados são
altamente
concentrados,
mantendo-se
estáveis
durante
o
período
analisado.
O
alto
índice
de
concentração
do
IHH
indica
que
há
pouca
competição
entre
os
países
que
compõem
essa
cadeia de
valor
. Ou seja,
poucos países dominam
o mercado dos materiais críticos analisados.
Assim,
identicou-se
que
os
principais
volumes
produzidos
se
concentram
nos
países
em
desenvolvimento,
com
exceção
da
Austrália,
que
possui
grandes
reservas
de
lítio.
O
Chile
também
se
destaca
na
extração
de
lítio
e
concentra
as
principais
minas
em
operação
de
cobre
e
lítio.
A
República
Democrática
do
Congo lidera
na
extração de
cobalto, enquanto
a
Indonésia
destaca-se
tanto
na
produção
quanto
no
processamento
de
níquel.
O
Peru
é
um
dos
países
mais
r
elevantes
em
termos
de
volumes
produzidos
de
cobr
e,
assim
como
o
Chile.
Por
outro
lado,
o
processamento
de
níquel,
cobalto,
cobre
e
lítio
é
concentrado
principalmente
na
China.
A
análise
do
IHH
ao
longo
do
tempo
revela
que
a
atividade
de
mineração
de
materiais
críticos
permanece
altamente
concentrada
em
certas
áreas
geográcas.
Essa
concentração
signica
que
a
oferta
global
desses
materiais
depende
fortemente
de
um
pequeno
número
de
países,
evidenciando
uma
falta
de
diversicação.
Da
mesma
forma,
o
processamento
desses
materiais
é igualmente
concentrado, com a capacidade
de
reno
predominantemente
localizada
em
poucos
países.
Por
exemplo,
a
China
possui
uma
posição
importante,
contr
olando
uma
parte
signicativa
da
capacidade
global
de
processamento
de
lítio
e
cobalto.
T
al
concentração
amplica
os
riscos
associados
à
cadeia
de
suprimentos,
pois
qualquer
interrupção
na
capacidade
de
reno
desses
poucos
países
pode
impactar
signicativamente
a
disponibilidade
global
de
materiais
processados.
Esse
cenário
sugere
uma
dinâmica
de
dependência
e
vulnerabilidade
para
países
importadores
que
dependem
do
fornecimento
desses
materiais
para
ns
industriais,
tecnológicos
e
energéticos.
A
interrupção
no
fornecimento
desses
materiais
processados
pode
produzir
consequências
signicativas
para
a
cadeia
de valor
global, visto
que são
necessários
para
o
desenvolvimento
tecnológico
inerente
à
transição energética.
Como
apontam
Sattich
et
al.
(2023),
conquistas
geopolíticas
vinculadas
às
energias
r
enováveis
parecem
depender
,
em
grande
parte,
de
avanços
industriais.
Nesse
sentido,
o
domínio
sobre
esses
mercados
pode
oferecer
vantagens
competitivas
em
termos
de
inovação
e
avanços
tecnológicos.
Países
que
controlam
a
mineração
e
o
processamento
de
materiais
críticos
podem
posicionar
-se
como
líderes
globais
167
no
for
necimento
de
materiais
críticos
para
a
transição
energética,
inuenciando
não
apenas
o
mercado,
mas
também
a
geopolítica
global.
Apesar de possuírem uma geograa de
comér
cio
única
que,
em
nível
agregado,
envolva
os
países
em
uma
rede
ampla
de
interdependência,
a
demanda
constante
por
materiais,
componentes
ou produtos acabados pode tornar cadeias
de
abastecimento
mais
vulneráveis
a
riscos
geopolíticos.
Por
m,
essa
análise
não suger
e
que
os
materiais
críticos
reproduzam
a
geopolítica
dos
combustíveis
fósseis
em
torno
da
distribuição
geográca
de
suas
reservas.
No
entanto,
indica
que
a
transição
energética
pode
recongurar
rotas comer
ciais
e inuenciar novas dinâmicas de
poder global.
Ao
analisar
os
resultados
deste
estudo,
é
fundamental
considerar
suas
limitações.
O
foco
na
extração,
sem
incluir
o
total
estimado
das
reservas,
compromete
uma
interpretação
mais
detalhada
de
longo
prazo
sobre
o
mer
cado
de
materiais
críticos,
visto
que
o
surgimento
de
novas
tecnologias
pode viabilizar
a
pr
odução
em
outras
regiões
cuja
extração
era
considerada
inviável.
Essa
distinção é
crucial
por
que
o
foco do
estudo
na
extração
atual
pode
não
reetir
o
potencial
de
produção
alternativo
de
longo
prazo
com
a
prospecção
de
novas
jazidas
e
r
eclassicação
de
recursos.
Para uma
melhor
análise,
examinar
como
o
surgimento
de
novas
tecnologias
de
mineração
e
processamento
viabiliza
a
extração
em
novas
áreas,
reduzindo
o
custo
unitário
de
produção,
contribui
para
compreender
a
dinâmica
do mercado de materiais críticos.
6. REFERENCES
Barak, On.
“OUTSOURCING: ENERGY
AND EMPIRE
IN THE AGE
OF COAL,
1820-1911.” Inter
national Journal
of Middle East Studies 47, no. 3 (2015): 425–45. http://www
.jstor
.org/stable/43997991.
Criekemans,
David.
(2023).
“Geopolitics,
Geoeconomics
and
Energy
Security
in
an
Age
of
T
ransition
towards
Renewables.”
In
Handbook
on
the
Geopolitics
of
the
Energy
T
ransition.
https://doi.org/10.4337/9781800370432.
Emmanuel
Hache,
Gondia
Sokhna
Seck,
Fer
nanda
Guedes,
and
Charlene
Barnet.
(2023).
“Critical
Materials
–
New Dependencies and Resource Curse?,” 12.
Fouquet,
R.,
(2009).
A
brief
history
of
energy
.
In:
Evans,
J.,
Hunt,
L.C.
(Eds.),
International
Handbook
of
the
Economics of Energy
. Edward Elgar Publications, Cheltenham, UK, and Northampton, MA, USA.
Grandell, Leena, Antti
Lehtilä, Mari Kivinen, Tiina Koljonen, Susanna Kihlman,
and Laura S. Lauri.
(2016). “Role of
Critical
Metals
in
the
Future
Markets
of
Clean
Energy
T
echnologies.”
Renewable
Energy
95:
53–62.
https://doi.
org/10.1016/j.renene.2016.03.102.
Greim, Peter
, A. A. Solomon, and Christian
Breyer
. (2020). “Assessment of Lithium Criticality in the
Global Energy
T
ransition
and
Addressing
Policy
Gaps
in
T
ransportation.”
Nature
Communications
11
(1):
1–11.
https://doi.
org/10.1038/s41467-020-18402-y
.
Hatipoglu,
Emre,
Saleh
Al Muhanna,
and Brian
Erd.
(2020).
“Renewables
and
the
Future
of
Geopolitics: Revisiting
Main
Concepts
of
Inter
national
Relations
fr
om
the
Lens
of
Renewables.”
Russian
Journal
of
Economics
6
(4):
358–73. https://doi.org/10.32609/J.RUJE.6.55450.
IEA.
(2018).
“Global
EV
Outlook
2018
-
T
owards
Cross-Modal
Electrication.”
https://doi.
org/10.1787/9789264302365-en.
IEA.
(2023).
“Critical
Minerals
Market
Review
2023.”
Critical
Minerals
Market
Review
2023.
https://doi.
org/10.1787/9cdf8f39-en.
IRENA. (2021). Securing Critical Minerals for the Energy T
ransition. Canadian Mining Journal. V
ol. 142.
168
IRENA.
(2023).
“Geopolitics
of
the
Energy
T
ransition:
Critical
Materials.”
Jour
nal
of
Geographical
Sciences.
V
ol.
33.
https://doi.org/10.1007/s11442-023-2101-2.
Korinek,
Jane,
and
Jeonghoi
Kim.
(2011).
“Export
Restrictions
on
Strategic
Raw
Materials
and
Their
Impact
on
T
rade and Global Supply
.” Journal of World T
rade 45 (2): 255–81. https://doi.org/10.54648/trad2011009.
Lundaev
,
Vitalii,
A.
A.
Solomon,
T
ien
Le,
Alena
Lohrmann,
and
Christian
Br
eyer
.
(2023).
“Review
of
Critical
Materials
for
the
Energy
T
ransition,
an
Analysis
of
Global
Resources
and
Production
Databases
and
the
State
of
Material
Circularity
.” Minerals Engineering. https://doi.org/10.1016/j.mineng.2023.108282.
Månberger
, André, and B.
Johansson. (2019). “The Geopolitics
of Metals and
Metalloids Used for the
Renewable
Energy T
ransition.” Energy Strategy Reviews 26 (December 2018). https://doi.org/10.1016/j.esr
.2019.100394.
Marianne
Zotin,
Pedr
o
Rochedo,
Joana
Portugal-Pereira,
and
and
Roberto
Schaefer
Alexandr
e
Szklo.
(2023).
“CRITICAL CONNECTIONS IN MA
TERIAL TRANSITIONS AND ENERGY TRANSITIONS.” In , 7823–30.
Naldi,
Maurizio,
and
M.
Flamini.
(2014).
The
CR4
Index
and
the
Interval
Estimation
of
the
Herndahl-Hirschman
Index: An Empirical Comparison.
National Research Council. (2008). “Minerals, Critical Minerals, and the U.S. Economy
.” Society II: 790.
Oliveira, Isabela Fer
nandes De. (2023). “MERCADO BRASILEIRO DE VEÍCULOS ELÉTRICOS:
UMA A
V
ALIAÇÃO
A
P
ARTIR
DA
INTEGRAÇÃO
DA
ANÁLISE
PEST
AL
AO
MODELO
ESTRUTURA-CONDUT
A-DESEMPENHO
(
ECD
).”
Resende,
Mar
celo;
Hugo
Bo. (2013).
“Economia
Industrial.”
In
Revista de
Administração
de
Empresas, 35:86–
87. https://doi.org/10.1590/s0034-75901995000500012.
Robert
Groß,
Jan
Streeck,
Nelo
Magalhães,
Fridolin
Krausmann,
Helmut
Haberl,
Dominik
Wiedenhofer
,
(2022).
How
the
European
recovery
program
(ERP)
drove
France’
s
petroleum
dependency
,
1948–1975,
Environmental
Innovation
and
Societal
T
ransitions,
V
olume
42,
2022,
Pages
268-284,
ISSN
2210-4224.
https://doi.org/10.1016/j.
eist.2022.01.002.
Roonwal,
G
S.
(2019).
Springer
Geology
Mineral
Exploration:
Practical
Application.
http://www
.springer
.com/
series/10172.
Su,
Chi
Wei,
Khalid
Khan,
Muhammad
Umar
,
and
Weike
Zhang.
(2021).
“Does
Renewable
Energy
Redene
Geopolitical Risks?” Energy Policy 158 (August). https://doi.org/10.1016/j.enpol.2021.112566
Thomas
Sattich,
Stephen
Agyare
e
Oluf
Langhelle.
(2023).
Solar
powers
–
renewables
and
sustainable
development
around
the world
or geostrategic
competition? Handbook
on the
Geopolitics of
the Energy
T
ransition. https://doi.
org/10.4337/9781800370432
U.S.
Geological
Survey
.
(2023).
Mineral
Commodities
Summary
2024.
Mineral
Commodity
Summaries
2023.
http://pubs.er
.usgs.gov/publication/mcs2023.
WMD. (2024). World Mining Data. https://www
.world-mining-data.info/?World_Mining_Data___Data_Section.
WIPO.
(2023).
Global
Innovation
Index
2023
Innovation
in
the
Face
of
Uncertainty
.
Inter
national
Journal
of
T
echnology
.
V
ol.
47.
https://doi.org/10.1016/j.tranpol.2019.01.002%0Ahttps://doi.org/10.1016/j.
cstp.2023.100950%0Ahttps://doi.org/10.1016/j.geoforum.2021.04.007%0Ahttps://doi.org/10.1016/j.
trd.2021.102816%0Ahttps://doi.org/10.1016/j.tra.2020.03.015%0Ahttps://doi.org/10.1016/j.eastsj.20.
Y
ang,
Jianfeng,
Y
un
Y
u,
T
eng
Ma,
Cuiguang
Zhang,
and
Quan
W
ang.
(2021).
“Evolution
of
Energy
and
Metal
Demand
Driven
by
Industrial
Revolutions
and
Its
T
rend
Analysis.”
Chinese
Journal
of
Population
Resources
and
Environment 19 (3): 256–64. https://doi.org/10.1016/j.cjpr
e.2021.12.028.
169
7. APÊNDICE A: T
ABELAS DE MARKET SHARE E S²
T
abela 10: Market Share e S² da extração do cobre
T
abela 11: Market Share e S² do processamento do cobr
e
T
abela 12: Market Share e S² da extração do lítio
T
abela 13 Market Share e S² do processamento do lítio
T
abela 14: Market Share e S² da extração do níquel
T
abela 15: Market Share e S² do processamento do níquel
170
T
abela 16: Market Share e S² da extração do cobalto
T
abela 17: Market Share e S² do processamento do cobalto
172
Av
. Mariscal Antonio José de Sucre
N58-63 y Fernandez Salvador
Quito - Ecuador
T
el. (+593 2) 2598-122 / 2598-280 / 2597-995
enerlac@olade.org