Análisis biofísico del ciclo de vida en la producción de ecoladrillos en las islas Galápagos
Identicación de los posibles Impactos Ambientales de la producción de hidrógeno verde a partir de proyectos eólicos oshore. Caso de
Estudio:Zona Económica Exclusiva de Uruguay
Garantias nanceiras: evoluções regulatórias para assegurar o efetivo descomissionamento das instalações de produção
de petróleo e gás natural no Brasi
Industrial development for the energy transition in latin america: Lessons learned from wind energy for green hydrogen in Argentina
Techno-economic assessment of the use of green hydrogen: case study in the ceramic industry
Assessing Uruguay’s green hydrogen potential: A comprehensive analysis of electricity and hydrogen sector optimization until 2050
Solar energy time series analysis via markov chains
China and the global expansion of green energy technologies: EVs, batteries and lithium investments in Latin America.
Uma análise sobre a inuência geopolítica da transição energética na cadeia de valor global de materiais críticos
Volúmen VIII, número 2, Diciembre 2024
ISSN 2602-8042 impreso / 2631-2522 digital
1
COMITÉ EDITORIAL
Andrés Rebolledo Smitmans
Organización Latinoamericana de Energía (OLADE). Ecuador.
Pablo Garcés
Organización Latinoamericana de Energía (OLADE). Ecuador.
Marcelo Vega
Asociación de Universidades Grupo Montevideo (AUGM). Uruguay.
COMITÉ AD-HONOREM
Andrés Romero C.
Ponticia Universidad Católica de Chile.
Leonardo Beltrán.
Institute of the Americas. México.
Manlio Coviello.
Ponticia Universidad Católica de Chile.
Mauricio Medinaceli.
Investigador independiente. Bolivia.
Ubiratan Francisco Castellano.
Investigador independiente. Brasil.
COORDINADORES DE LA EDICIÓN
DIRECTOR GENERAL
Andrés Rebolledo Smitmans
DIRECTORES EJECUTIVOS
Pablo Garcés
Marcelo Vega
COORDINADOR DE PRODUCCIÓN
Pablo Garcés
CONSULTORES INDEPENDIENTES
Octavio Medina
2
REVISORES
Fabio García
OLADE, Ecuador.
Luis Daniel García
Consultor Independiente.
Atahualpa Mantilla
Universidad Central del Ecuador.
Fernando Jaramillo
Universidad Laica Eloy Alfaro, Ecuador.
Luciana Clementi
CONICET, Argentina.
José Cataldo
Universidad de la República, Uruguay.
Italo Bove
Universidad de la República, Uruguay.
Iván López
Universidad de la República, Uruguay.
José Alonso
Universidad Internacional de la Rioja, España.
Axel Poque
Ponticia Universidad Católica de Valparaíso, Chile.
Marcos Medina
Universidad Nacional del Nordeste, Argentina.
Ana Lía Guerrero
Universidad Nacional del Sur, Argentina.
Tania Ricaldi
Universidad Mayor de San Simón, Bolivia.
Daniel Canedo
ENDE, Bolivia.
Sergio Pinto Castiñeiras Filho
Ponticia Universidad Católica de Río de Janeiro, Brasil
María del Sol Muñoz
Investigadora Independiente, Chile y México
Marlei Roling Scariot
Universidade Federal da Integração Latino Americana, Brasil
Pablo Albán
Ministerio de Energía y Minas, Ecuador
3
INDICE
Editorial OLADE
Editorial ALADEE
Análisis biofísico del ciclo de vida en la producción de
ecoladrillos en las islas Galápagos
Identicación de los posibles Impactos Ambientales de
la producción de hidrógeno verde a partir de proyectos
eólicos oshore. Caso de Estudio: Zona Económica
Exclusiva de Uruguay
Garantias nanceiras: evoluções regulatórias para
assegurar o efetivo descomissionamento das instalações
de produção de petróleo e gás natural no Brasil
Industrial development for the energy transition in latin
america: Lessons learned from wind energy for green
hydrogen in Argentina.
Techno-economic assessment of the use of green
hydrogen: case study in the ceramic industry
Assessing Uruguay’s green hydrogen potential: A
comprehensive analysis of electricity and hydrogen sector
optimization until 2050.
Solar energy time series analysis via markov chains
China and the global expansion of green energy
technologies: EVs, batteries and lithium investments in
Latin America.
Uma análise sobre a inuência geopolítica da transição
energética na cadeia de valor global de materiais críticos
5
7
9
25
45
63
79
95
117
137
153
5
La presente edición especial de la Revista ENERLAC se enmarca en
la colaboración institucional entre la Organización Latinoamericana
de Energía (OLADE) y la Asociación Latinoamericana de Economía
de la Energía (ALADEE). Esta edición de la revista de publicación
conjunta representa mucho más que una compilación de artículos
académicos; constituye un testimonio tangible del compromiso
compartido por ambas organizaciones para promover transiciones
energéticas justas y equitativas en América Latina y el Caribe.
La decisión de OLADE y ALADEE de unir esfuerzos en esta
edición de ENERLAC responde a la necesidad urgente de integrar
perspectivas técnicas, económicas y sociales en el abordaje de las
transiciones energéticas en marcha en la región. En un contexto
global de transformación acelerada del sector energético, esta
colaboración editorial materializa la convicción compartida de que las publicaciones académicas
deben trascender la divulgación para convertirse en instrumentos efectivos de cambio.
Esta colaboración editorial rearma un principio fundamental: el conocimiento académico en materia
energética adquiere su máximo valor cuando se pone al servicio de transformaciones energéticas
adaptadas a las condiciones regionales y con efectos sociales positivos. En un contexto regional
marcado por profundas desigualdades, las transiciones energéticas representan tanto un desafío
como una oportunidad histórica para recongurar sistemas energéticos de formas que contribuyan
a la equidad social y el desarrollo sostenible.
ENERLAC, como plataforma editorial, se consolida así no solo como un espacio de difusión
académica, sino como un instrumento concreto para la construcción colectiva de visiones
energéticas que respondan auténticamente a las aspiraciones y necesidades de las sociedades
latinoamericanas y caribeñas.
Es importante recalcar que una buena parte del material presentado en la presente edición, es fruto
de la IX edición del evento: Latin American Energy Economics Meeting (ELAEE), desarrollado en el
mes de julio en Rio de Janeiro, organizado por la ALADEE.
Invitamos a nuestros lectores—investigadores, tomadores de decisión, empresas, organizaciones
sociales y público interesado—a sumarse activamente a este esfuerzo colaborativo. Las transiciones
energéticas justas y equitativas que nuestra región requiere conllevan procesos sociales amplios
donde el conocimiento técnico y económico dialogue permanentemente con valores éticos,
aspiraciones comunitarias y visiones de desarrollo inclusivo.
Esta edición especial de ENERLAC es nuestra contribución a ese diálogo esencial. Un diálogo al
que OLADE y ALADEE, desde sus respectivas trayectorias institucionales y ahora desde su alianza
estratégica, se comprometen a enriquecer con investigación rigurosa, análisis independiente y
perspectivas diversas.
EDITORIAL OLADE
7
E
sse número especial da Enerlac é fruto
de uma parceria entre Associação Latino
Americana de Economia da Energia (ALADEE)
e a Organização Latino-Americana de Energia
(OLADE). O número traz artigos selecionados
que foram apresentados no Encontro Latino
Americano de Economia da Energia (ELAEE). O 9º
ELAEE foi realizado no Rio de Janeiro de 28 a 31 de
julho de 2024 e faz parte dos congressos regionais
da International Association of Energy Economics
(IAEE). O Encontro contou com 10 plenárias
temáticas em que participaram especialistas
internacionais e 174 artigos que passaram por
chamada de seleção foram apresentados.
O tema do encontro foi “Transição Energética,
Mercados de Energia na América Latina e Caminhos
para o Desenvolvimento: Descarbonização da
Economia Global”. Foram debatidos os desaos
da transição energética no mundo, em um cenário
de conitos geopolíticas e incerteza de suprimento
energético. Esse cenário impacta a América Latina,
oferecendo diculdades e oportunidades. A região
conta com abundância de recursos renováveis e
as novas tecnologias, como o hidrogênio verde,
podem favorecer a liderança da região no processo
de descarbonização.
A parceria com a Enerlac é bastante promissora
para a ALADEE cumprir seu papel de difundir o
tema de Economia da Energia na América Latina.
A publicação desse número especial pode ser um
passo inicial para uma cooperação duradoura com
a Olade e Enerlac.
EDITORIAL ALADEE
Luciano Losekann
Diretor Edu
Professor Associado -
Economia/UFF
Diogo Lisbona Romeiro
Presidente
ALADEE
9
Análisis biofísico del ciclo de vida en la
producción de ecoladrillos en las islas
Galápagos
Biophysical analysis of the life cycle in the production of
eco-bricks in the Galapagos islands
Fernando Pinzón Duchi
1
, Rony Parra Jácome
2
Recibido: 05/09/2024 y Aceptado: 9/12/2024
1.- Mentefactura Cia. Ltda. https://orcid.org/0000-0002-5422-6086
lfpinzonm2@gmail.com
2.- Instituto de Investigaciones Hidrocarburiferas - Universidad Central del Ecuador https://orcid.org/0000-0003-2942-7449
rmparra@uce.edu.ec
10
11
Los recursos minerales y energéticos en las Islas Galápagos son limitados, lo que afecta las dinámicas
socioeconómicas, sobre todo en la construcción de edicaciones. Los materiales de construcción deben
importarse desde continente, lo que incrementa el consumo de combustibles fósiles y las emisiones
de gases de efecto invernadero (GEI). Como alternativa para reducir la presión sobre el ecosistema, se
ha comenzado a producir y utilizar ecoladrillos fabricados con vidrio reciclado, siguiendo los principios
de la economía circular (EC). No obstante, la producción de ecoladrillos requiere energía y materiales
imprevistos, lo que podría afectar su sostenibilidad. El estudio se propuso analizar los ujos biofísicos
presentes en la producción de ecoladrillos en Galápagos, con un enfoque particular en las emisiones
de dióxido de carbono equivalente (CO₂e) derivadas del consumo de materiales y energía. Utilizando la
metodología de Análisis del Ciclo de Vida (ACV), se determinó que la producción de 16,800 ecoladrillos
generó 5 toneladas de CO₂e. El uso de cemento fue responsable del 79.40% de las emisiones totales
y del 62.2% de la energía utilizada. En comparación con la producción de un bloque de hormigón
convencional, la energía incorporada se reduce en un 12.5%, mientras que las emisiones aumentaron
en un 16.8%.
Mineral and energy resources in the Galapagos Islands are limited, which aects socio-economic
dynamics, especially in building construction. Building materials must be imported from the mainland,
which increases fossil fuel consumption and greenhouse gas (GHG) emissions. As an alternative to
reduce pressure on the ecosystem, eco-bricks made from recycled glass have started to be produced
and used, following the principles of the circular economy (CE). However, the production of eco-bricks
requires unforeseen energy and materials, which could aect their sustainability. The study set out to
analyze the biophysical ows present in the production of eco-bricks in Galapagos, with a particular
focus on carbon dioxide equivalent (CO₂e) emissions derived from material and energy consumption.
Using the Life Cycle Assessment (LCA) methodology, it was determined that the production of 16,800
eco-bricks generated 5 tons of CO₂e. The use of concrete was responsible for 79.40% of the total
emissions and 62.2% of the energy used. Compared to the production of a conventional concrete
block, embodied energy is reduced by 12.5%, while emissions increased by 16.8%.
PALABRAS CLAVE: Ecoladrillos, Análisis del Ciclo de Vida, energía incorporada, huella de carbono,
CO₂, economía circular, Galápagos.
KEYWORDS: Eco-bricks, Life Cycle Assessment, embodied energy, carbon footprint, CO₂, circular
economy, Galápagos.
Resumen
Abstract
12
1. INTRODUCCIÓN
A nivel global, las edicaciones son responsables
del 39% de las emisiones de dióxido de carbono
(CO₂) relacionadas con el consumo de energía
(FFLA, 2023). Mientras que solo el sector del
cemento es responsable del 7% del total de las
emisiones mundiales de CO₂ (Islam, et al., 2024).
De acuerdo con el Banco Central del Ecuador
(BCE), aunque la construcción es una industria
intensiva en energía, representó el quinto sector
más importante de la economía ecuatoriana,
siendo que, en el año 2022 aportó con el 6.1%
del Producto Interno Bruto (PIB) ecuatoriano
(CCQ, 2023).
En Galápagos el desarrollo del sector de la
construcción enfrenta múltiples desafíos, no
solo por la fragilidad de su ecosistema, sino
por la dinámica demográca y la demanda de
infraestructura. De acuerdo con los datos del
censo 2022 la población y las viviendas ocupadas
crecieron en un 13 % sobre las reportadas en
el censo 2015. La población pasó de 25.2 a
28.5 mil habitantes, mientras que las viviendas
ocupadas pasaron de 8.5 a 9.6 mil en solo 7
años. Se muestra también que el 96% (9,268) de
viviendas usa hormigón, bloques o ladrillos para
la construcción de paredes, y el 42.02% (4,058)
tiene loza de hormigón en el techo (INEC, 2023;
INEC, 2015).
Por su parte: a) la disminución de los stocks
de materiales pétreos en las minas de piedra
volcánica dentro del Parque Nacional (Euroclima
y Mentefactura, 2020); b) la reducción en
la disponibilidad de agua dulce debido a
alteraciones en los patrones de lluvia y al aumento
de las temperaturas (CAF, 2021); c) la alta
dependencia de la importación de materiales de
construcción y energía; y d) la limitada efectividad
en la implementación de una matriz energética
renovable, dado que el 99.48% de la electricidad
proviene del diésel (INEC, 2023), son muestras
de la presión que el sistema socioeconómico
de Galápagos ejerce sobre su ecosistema en
términos de escasez de recursos y emisiones de
gases de efecto invernadero (GEI).
En este contexto, se vuelve crucial explorar
estrategias que promuevan la eciente
optimización de los recursos. La construcción
sostenible y la economía circular (EC) sugieren
maximizar el aprovechamiento responsable y
sostenible de estos recursos, en aras de fortalecer
la resiliencia frente al cambio climático. Sus
principios consideran aspectos como la eciencia
energética, el uso eciente del agua, la mejora
del ambiente interior y la relación con el entorno
urbano y natural y la elección de materiales con
baja huella ecológica que son indispensables a
ser implementados en las islas (Valencia, 2018).
Esta investigación tiene como objetivo analizar los
ujos biofísicos en el ciclo de vida de la producción
de ecoladrillos en Galápagos para determinar su
impacto sobre el ecosistema. Se analizaron las
emisiones de dióxido de carbono equivalente
(CO₂e), así como el consumo de materiales, agua
y energía en cada etapa del proceso productivo.
Al evaluar estos factores, se determinó varios
indicadores de sostenibilidad sobre la producción
de ecoladrillos en términos de eciencia energética,
huella hídrica y de emisión de carbono.
13
La Ley Orgánica de Economía Circular Inclusiva
de Ecuador (2021) dene a la EC como un modelo
que busca la regeneración y restauración de los
ecosistemas mediante un cambio estratégico en
la producción y el consumo (Asamblea Nacional,
2021). Mientras que, el Parlamento Europeo-
PE (2023) establece que la EC se trata de un
enfoque de producción y consumo que involucra
prácticas como el compartir, alquilar, reutilizar,
reparar, renovar y reciclar materiales y productos
existentes, con el propósito de generar valor
agregado y, de esta manera, extender el ciclo de
vida de los productos.
Especícamente en la industria de la construcción,
el cambio hacia la circularidad requiere centrarse
en el pensamiento sistémico para comprender
todo el ciclo de vida de las infraestructuras y la
cadena de valor de la construcción (Zimmann et
al., 2016). Adoptar los principios de la EC y un
diseño ecológico puede reducir signicativamente
el consumo de recursos y el impacto ambiental,
promoviendo un uso más eciente de los
materiales de construcción (Munaro et al., 2020).
En este contexto, un ejemplo destacado se
encuentra en la isla de Bornholm, Dinamarca. Allí
se llevó a cabo una investigación para explorar la
creación de una cadena de valor basada en un
sistema de producción y consumo de circuito
cerrado. Durante este estudio, se realizaron
pruebas y demostraciones de prácticas destinadas
a reutilizar y reciclar residuos de construcción
y demolición. Los resultados indicaron la
viabilidad de casos comerciales positivos para
la demolición selectiva, siempre y cuando se
establezcan mercados locales para los materiales
de construcción reutilizados (Christensen et al.,
2022).
La EC en la construcción va más allá de la gestión
de residuos e involucra toda la cadena de valor del
proceso constructivo. Comienza en la etapa de
planicación, considerando el espacio y las futuras
circunstancias para asegurar la perdurabilidad
2. ESTADO DEL ARTE
2.1 Economía circular en la construcción
del proyecto. En el diseño se optimizan los
materiales, se reduce la generación de residuos
y se adoptan prácticas como la construcción
modular y elementos industrializados. Además, se
planica la deconstrucción y se fomenta el uso de
productos reutilizables o reciclables al nal de su
vida útil (Congreso Nacional de Medio Ambiente,
2018). Así, la construcción puede evolucionar
de un enfoque convencional a uno alineado con
principios sostenibles.
La EC se alinea con la construcción sostenible al
aplicar sus principios para gestionar de manera
eciente recursos esenciales, como energía y
agua, desde el diseño hasta el mantenimiento
y rehabilitación de infraestructuras, utilizando
además materiales sostenibles y reprocesados
con baja huella ecológica. Esto conlleva
benecios como la eciencia energética, la
optimización del uso del agua, la prolongación de
la vida útil de las infraestructuras, la reducción de
costos operativos y la minimización de residuos.
Además, esta perspectiva impulsa el desarrollo
de bioemprendimientos, fortalece la resiliencia
al cambio climático y fomenta la creación de
regulaciones, contribuyendo a la construcción de
infraestructuras más responsables y resilientes.
En Ecuador, se han logrado avances normativos
que impulsan una construcción más eciente en
términos de consumo energético. Estos avances
incluyen la Norma Técnica Ecuatoriana (NTE)
INEN 2506:2009 sobre eciencia energética en
edicaciones y la NTE INEN 2507:2009 sobre
rendimiento térmico de colectores solares. A partir
de 2011, se desarrolló la Norma Ecuatoriana de
Construcción (NEC), que establece parámetros
mínimos de seguridad y calidad en las
edicaciones, optimiza los mecanismos de control
y mantenimiento en los procesos constructivos,
entre otros, y en 2018 se publicó la normativa
especíca de eciencia energética (MIDUVI,
2018). En 2019, la Ley Orgánica de Eciencia
Energética fue promulgada, seguida en 2021
14
por su reglamento, que obliga a cumplir metas
sectoriales de eciencia energética y establece un
proceso de evaluación del consumo energético
para nuevas construcciones y remodelaciones
(Asamblea Nacional, 2019). Estas normativas
están alineadas con el Plan Nacional de Eciencia
Energética (PLANEE) 2016-2035. Sin embargo,
su aplicación aún no es efectiva en todo el territorio
y no contempla la cuanticación de la huella de
carbono en el ciclo de vida de las edicaciones.
Medir y reportar las emisiones de GEI de las
edicaciones es fundamental para producir
estrategias signicativas y rentables. Aunque las
metodologías de emisión de carbono varían entre
países, el marco básico suele ser el proceso bien
establecido del Análisis del Ciclo de Vida (ACV).
El ACV suele considerar un enfoque “de la cuna
a la cuna”, en el que los productos se evalúan
sistemáticamente a lo largo de toda su vida. En
los últimos años, ha existido un mayor interés en
los métodos de ACV para evaluar edicaciones
y productos con el n de diseñarlos de manera
eciente y con materiales ambientalmente
preferibles (Fenner, et al., 2018).
A nivel internacional, se han realizado múltiples
investigaciones sobre el ACV en bloques y
ladrillos. Un ejemplo notable es el estudio
comparativo realizado en Egipto sobre las
emisiones de carbono y la energía incorporada en
ladrillos secados al sol versus ladrillos de arcilla
cocida a través. Los resultados mostraron que,
por cada 1,000 ladrillos cocidos producidos, la
energía incorporada calculada es de 4,250 MJ
y el carbono incorporado de 5,502 kg de CO₂e,
mientras que, para los ladrillos secados al sol, solo
se necesitan 0.033 MJ de energía incorporada y
se emiten 0.24 kg de CO₂e (Dabaieh, et al., 2020).
Otra investigación en Argentina, realizada por
Saez y Garzón (2020), analizó la huella de
carbono en bloques elaborados con polipropileno
post-consumo. La metodología utilizada fue la
propuesta por las Normas IRAM-ISO 14040
y IRAM-ISO 14044, que se enfocan en el ACV.
2.2 Cuanticación de CO₂ en la construcción
Los resultados indicaron que la fabricación de un
metro cuadrado del prototipo en estudio genera
11.37 kg CO₂e.
En Ecuador, la investigación de Villota (2023)
calculó la huella de carbono de la fabricación
de ladrillos artesanales en la parroquia Sinincay,
Cuenca, utilizando la norma UNE-EN ISO 14064-
1:2019. Los resultados mostraron que las
emisiones directas e indirectas en la producción
anual de 360,000 ladrillos artesanales fueron de
72.74 toneladas de CO₂e.
En Galápagos, aún no se han realizado estudios
sobre la cuanticación de carbono en el sector de
la construcción o los materiales de construcción.
No obstante, se han encontrado otros estudios
relevantes. Por ejemplo, en la isla Santa Cruz,
el proyecto Huella de Ciudades calculó la huella
de carbono. En la ciudad de Puerto Ayora, se
estableció la línea de base de las huellas de
carbono e hídrica para el año 2015. Las emisiones
totales de GEI fueron de 45,353 toneladas de
CO₂e, representando aproximadamente el 0.01%
de las emisiones totales de Ecuador en 2011
reportadas en su Segunda Comunicación sobre
Cambio Climático en 2011 (CAF, 2017).
El Plan Galápagos 2030, emitido en 2021, promueve
la construcción sostenible y ambientalmente
amigable, adaptada al contexto insular de las
islas. Entre sus metas principales se incluyen la
descarbonización de Galápagos y la reducción del
20% en la huella de carbono y el consumo de agua
en los asentamientos humanos y las principales
15
3. METODOLOGÍA
actividades económicas. Además, como objetivo
estratégico, propone identicar oportunidades
para disminuir el uso de combustibles fósiles en el
transporte marítimo y el sector hotelero, mediante
la implementación de estándares y normas de
eciencia energética (CGREG, 2021). Para apoyar
sus metas y objetivos, es crucial realizar estudios
sobre las emisiones de CO₂ en el sector de la
construcción en Galápagos. Estos estudios son
necesarios para comprender el impacto real de
la construcción y proporcionar información valiosa
para los tomadores de decisiones.
En Galápagos, se ha comenzado a producir y utilizar
bloques y ladrillos ecológicos como parte de un
esfuerzo por emplear materiales más sostenibles y
locales. Diversos estudios han explorado el potencial
de estos bloques ecológicos para el aislamiento de
edicaciones y han demostrado que ofrecen un
rendimiento energético superior al de los bloques
convencionales (Prato & Schiavi, 2015).
Un estudio realizado en la isla de Mauricio
destaca los benecios de los bloques ecológicos
en la mejora del confort térmico de los edicios.
Joyram, Govindan y Nunkoo (2024) informan que
la tecnología de bloques ecológicos se introdujo
para reducir el consumo de energía necesario
para enfriar los espacios, especialmente durante
el verano, cuando las temperaturas superan los
35 °C. En otro estudio de 2015, The United Basalt
Products Ltd evaluó el desempeño energético
de dos edicios similares en Mauricio: uno
construido con bloques convencionales y el otro
con ecobloques. Los resultados demostraron que
los ecobloques son tres veces más ecientes en
Se utilizó la metodología del ACV para identicar
el proceso de producción de los ecoladrillos en
Galápagos. El alcance abardesde el transporte
de materiales a las islas hasta el apilado y secado
del producto nal, incluyendo las emisiones y el
consumo de energía relacionados con productos
fabricados, como el cemento. La información
obtenida fue mediante un enfoque bottom up, para
lo cual se estructuró un diagrama input-output
términos de resistencia térmica. Además, el edicio
con ecobloques requirió signicativamente menos
electricidad para enfriar el espacio en comparación
con el edicio de bloques convencionales (Joyram,
Govindan, & Nunkoo, 2022).
En Argentina, González (2014) documentó la
fabricación de bloques de paja y arcilla para
rellenar paredes envolventes en la Patagonia
Andina. La energía incorporada y las emisiones
de CO₂ fueron de 40 MJ y 3.4 kg CO₂e por metro
cuadrado de pared cubierta con bloques de
paja y arcilla, respectivamente. Estas cifras son
considerablemente menores en comparación con
las de los ladrillos cocidos comunes (481 MJ/m²
de pared y 38 kg CO₂e/m² de pared) y los bloques
de hormigón (141 MJ/m² de pared y 11 kg CO₂e/
m² de pared).
Por lo tanto, los bloques y ladrillos ecológicos
se han consolidado internacionalmente como
una alternativa atractiva frente a los bloques de
hormigón convencionales, gracias a su capacidad
para mejorar la eciencia energética de las
edicaciones y su menor impacto ambiental en la
fabricación. Se presume que el uso de reciclados,
disminuirían la intensidad energética y sus
emisiones de CO₂, sin embargo, la presencia de
energía y materiales imprevistos en los procesos
especícos de su producción, la tecnología y la
localización pueden impactar en la sostenibilidad
a largo plazo.
de ujos biofísicos, considerando las entradas
de ujos: energía (electricidad y combustibles),
actividad humana, materiales, agua y las salidas
de ujos: emisiones de CO₂e y residuos sólidos
(Gráco 1). Además, se identicaron los materiales
y emisiones propios de las islas y los provenientes
del continente.
16
Gráco 1. Propuesta de ACV del proceso productivo
Fuente: Elaboración propia
Para estimar las emisiones de CO₂e, se aplicaron
los principios del Protocolo de GHG, los factores
de emisión del Grupo Intergubernamental de
Expertos sobre el Cambio Climático (IPCC) de
2006 y factores propios del Sistema Nacional
Interconectado (SNI), para las emisiones, además
del análisis de las tasas de retorno energético
determinadas para cada subproceso.
Finalmente, se identicaron las variables intensivas,
que se reeren a la cantidad de recursos asociados
con la producción de un solo ecoladrillo, como la
energía consumida (Joules/ecoladrillo), materiales
necesarios (m³/ecoladrillo), el consumo de agua
(m³/ecoladrillo) y el trabajo realizado (horas-trabajo/
ecoladrillo). Las variables intensivas son útiles para
estimar los posibles impactos ecosistémicos en
las islas, ya que pueden convertirse en variables
extensivas. Las variables extensivas, por su parte,
reejan el total de recursos asociados con la
producción completa de los ecoladrillos, como el
total de energía consumida, el volumen total de
agua y materiales utilizados y las horas de trabajo
empleadas.
La población y muestra del estudio comprende
los proveedores de mampostería ecológica
disponibles en las islas Galápagos. Se identicaron
dos iniciativas en Santa Cruz dedicadas a
la producción de mampostería ecológica: la
constructora Garden House Design (GHD) y
ReciclArte. Por lo tanto, se decidió aplicar un
muestreo no probabilístico por conveniencia,
dada la escasez de proveedores en las islas. La
constructora GHD fue seleccionada como objeto
de estudio, dado que actualmente se dedica
a la producción de ecoladrillos y cuenta con la
maquinaria necesaria.
Se trabajó con información secundaria de
diversas fuentes bibliográcas y estadísticas
para complementar las brechas de datos,
especialmente en lo referente al consumo de
combustible desde continente hacia las islas,
así como emisiones y energía incorporada del
cemento. Además, se aplicaron los factores de
emisión del IPCC y factores propios del SNI.
Adicionalmente, se diseñó y se levantó un
cuestionario semiestructurado de entrevista in situ
en el mes de marzo de 2024 que incluyó preguntas
abiertas realizada a actores estratégicos presentes
en los subprocesos del sistema de producción
para recabar información primaria sobre los ujos
biofísicos.
La constructora GHD está ubicada en Santa Cruz,
El Cascajo, vía a la playa El Garrapatero (Figura 1),
produce ecoladrillos a partir de vidrio reciclado y
utiliza maquinaria eléctrica únicamente para dos
procesos (prensado y la limpieza). Está equipada
con diferentes moldes de hierro intercambiables
y de tamaño variable, que permiten fabricar
ecoladrillos según las dimensiones requeridas del
producto nal. En noviembre de 2022, alcanzaron
su mayor producción con 16,800 ecoladrillos,
cifra que se tomó como referencia para el estudio.
17
Figura 1. Ubicación del estudio
Fuente: Elaboración propia
De acuerdo con los principios del Protocolo GHG
realizado por (WRI, WBCSD, & SEMARNAT,
2005), las emisiones del estudio corresponden al
Alcance 2 (emisiones indirectas de GEI asociadas
a la electricidad), debido al uso de dos maquinarias
para el proceso de prensado y limpieza.
El estudio también abarca el Alcance 3 (otras
emisiones indirectas), que incluye las emisiones
resultantes de las actividades de la empresa,
pero que provienen de fuentes que no son de su
propiedad ni están bajo su control. Dentro de este
alcance, se identicaron dos fuentes principales:
a) las emisiones asociadas al consumo de
combustible para el transporte de materiales y
el combustible utilizado para generar electricidad
en las islas, y b) las emisiones asociadas a la
producción de cemento.
En cuanto al transporte de materiales para la
producción de los 16,800 ecoladrillos, el tiempo
estimado de viaje desde Guayaquil hasta Santa
Cruz es de 5 días (MTOP, 2021). Según la cha
técnica del buque Fusion 2, que opera en esta
ruta, el consumo estimado de combustible
es de 2,966 galones de diésel oil por día. Esto
equivale a un total de 14,830 galones de diésel
consumidos en los 5 días de viaje. El buque tiene
una capacidad máxima de 373 contenedores de
20 pies y un tonelaje neto de 2,052.33 toneladas
(Pacic Cargo Line, 2020). Por lo tanto, transportar
una carga de 144 quintales de cemento de 50 kg
(7.2 toneladas) requeriría 52.03 galones de diésel.
Para calcular el consumo de combustible en el
transporte de diésel y gasolina de Guayaquil a
Santa Cruz, se tomó como referencia el buque
ALFA 007, que transporta 10,000 barriles de
diésel (420,000 galones) y 5,000 barriles de
gasolina (210,000 galones), y tarda dos días en
llegar a Santa Cruz (CGREG, 2019). Según la cha
técnica del buque, tiene un consumo diario de
3,170 galones de diésel oil (Consulat, 2014), por
lo que consumiría 6,340 galones de diésel en los
dos días. Por lo tanto, transportar 34 galones de
gasolina necesarios para transportar los materiales
al interior de Santa Cruz requiere 0.342 galones
de diésel. Asimismo, se requieren 17.28 galones
de diésel para la generación de electricidad
del proceso productivo, y su transporte desde
Guayaquil requeriría 0.1739 galones de diésel.
4. RESULTADOS Y ANÁLISIS
4.1 Alcance de emisiones y energía incorporada
18
En referencia a las emisiones del cemento,
investigaciones internacionales informan que la
producción de 1 tonelada de cemento Portland
produce aproximadamente 900 kg de emisiones
de CO₂ (Dey, et al., 2023; Benhelal, et al., 2013).
Sin embargo, en la memoria de sostenibilidad
de Holcim Ecuador 2019/2020, informan que la
intensidad de emisiones es 552 kg CO₂ neto por
tonelada material cementante (Holcim, 2021). Se
va a tomar como referencia este último valor, dado
que es una empresa que opera en el país. Por
lo tanto, un quintal de cemento de 50 kg emite
alrededor de 27.6 kg de CO₂e, y los 144 quintales
de cemento necesarios para producir los 16,800
ecoladrillos generarían 3,974.40 kg de CO₂e.
En cuanto a la energía necesaria para el proceso
productivo, según la investigación de (León
& Guillén, 2020), la energía incorporada en la
producción de una tonelada de cemento es de
3,191.95 MJ. Los principales aportes de energía
provienen del uso de caliza, fuel oil y electricidad.
Por lo tanto, para producir 16,800 ecoladrillos,
que requieren 7.2 toneladas de cemento, se
necesitarían 0.02298 TJ de energía.
De esta manera, considerando el consumo
de combustibles y energía en la producción de
16,800 ecoladrillos, se requiere un total de 0.0369
TJ (Tabla 1).
Tabla 1. Energía incorporada por proceso y material
Fuente: Elaboración propia con datos de GHD (2024), León & Guillén (2020) y CENACE (2020)
19
El ACV (Gráco 2) reveló que la producción de
16,800 ecoladrillos genera emisiones indirectas
de 5 toneladas de CO₂e. Esto implica que la
Las emisiones indirectas relacionadas con el
cemento constituyen el 79.40% de las emisiones
totales y además contiene el 62.2% de la energía
incorporada del ecoladrillo, es un dato relevante
dado que son emisiones y energía contabilizada
desde continente y que frecuentemente son
obviadas en los análisis tradicionales. Mientras
que la etapa de transporte de materiales, con
un 17.05%, es la segunda mayor generadora
Gráco 2. Visualización del ciclo de vida de la producción de ecoladrillos (2022)
Fuente: Elaboración propia con datos de GHD (2024)
4.2 Análisis del Ciclo de Vida
producción de cada ecoladrillo con dimensiones
de 12cmx8cmx25cm (2,400 cm³) emite 0.297 kg
de CO₂e.
de emisiones y contiene el 31.1% de la energía
incorporada. Por otro lado, las emisiones indirectas
relacionadas con la electricidad representan tan
solo el 3.55% y contienen el 6.5% de energía
incorporada, es mínimo, ya que gran parte del
proceso es artesanal y se realiza manualmente.
En cuanto a los materiales, la producción de
ecoladrillos se basa principalmente en agua, que
20
representa el 60.65% del total, seguido de arena
con el 28.52% y polvo de vidrio con el 8.55%.
Caso contrario, el cemento constituye solo el
2.29% de los materiales utilizados.
A partir de ACV se calcularon variables intensivas
y extensivas (Tabla 2). Las variables intensivas
se obtuvieron dividiendo las variables extensivas
entre el total de 16,800 ecoladrillos producidos.
Con estos datos, se pueden estimar fácilmente
los requerimientos futuros de materiales si la
demanda de ecoladrillos aumenta en las islas
(Autor, Bukkens, & Giampietro, 2020; Autor,
Di Felice, Giampietro, & Ramos, 2018). Estos
valores son importantes para discutir los posibles
Por otro lado, una jornada laboral estándar
en Ecuador comprende 160 horas al mes. La
variable de trabajo muestra que la producción
de ecoladrillos requiere de 3.34 personas al mes
para mantener ese ritmo de producción. No
obstante, se ha determinado que la capacidad
de producción de ecoladrillos podría aumentar
considerablemente según la demanda, lo cual
incrementaría la necesidad de mano de obra y, en
consecuencia, fomentaría el empleo en las islas.
De acuerdo con GADM Santa Cruz (2009), en
2009 la mina Granillo Rojo tenía un volumen de
1,908,698 de material y la tasa de extracción de
la mina es de 81,206.63 (DPNG, 2013). Lo que
indicaría que para 2023 su volumen se reduciría a
impactos sobre el ecosistema, dado que en
Galápagos existe escasez de arena, energía y
agua (Galapagos Conservation Trust, 2015).
Tabla 2. Variables intensivas y extensivas
Fuente: Elaboración propia con datos de GHD (2024)
771,805.18 m³. Si se mantiene la misma tasa de
extracción los recursos se acabarían en 9.5 años.
Para comparar los resultados, se utilizaron los
hallazgos de la investigación de (Urgilés & Vanessa,
2017), quienes elaboraron el Inventario del Ciclo
de Vida de un bloque de hormigón convencional
en la ciudad de Cuenca. Este estudio fue
seleccionado porque también consideró tanto la
energía incorporada como las emisiones de CO₂
asociadas al cemento. Según su investigación, la
energía incorporada y las emisiones de CO₂ para
un bloque de 10cmx20cmx40cm (8,000 cm³)
son de 8.34 MJ por bloque y 0.83 kg de CO₂ por
bloque.
21
En el presente estudio, se evaluó un ecoladrillo
de 12cmx8cmx25cm (2,400 cm³) y se obtuvieron
valores de 2.2 MJ por ecoladrillo y 0.297 kg de
CO₂/ecoladrillo. Si se ajustaran las dimensiones del
ecoladrillo para que tuviera el mismo volumen que
el bloque de hormigón (8,000 cm³), el ecoladrillo
emitiría 7.3 MJ y 0.97 kg de CO₂ por unidad. Esto
signica que, en comparación con el bloque de
hormigón, la energía incorporada en el ecoladrillo
se reduciría en un 12.5%, pero las emisiones de
CO₂ aumentarían en un 16.8%.
El uso de vidrio reciclado en lugar de otros
materiales probablemente redujo la energía
incorporada en la fabricación del ecoladrillo.
Los materiales reciclados suelen requerir menos
energía para un nuevo procesamiento, dado que
ya tienen un proceso productivo detrás de ellos,
a diferencia de los materiales vírgenes utilizados
en la fabricación de bloques de hormigón. Sin
embargo, este ahorro de energía no se tradujo en
una reducción de las emisiones de CO₂; de hecho,
estas aumentaron un 16.8%. Este incremento se
debe a factores como el transporte de materiales
desde continente y el uso de combustibles fósiles
para generar la electricidad necesaria para la
producción de los ecoladrillo.
La metodología empleada permitió identicar
datos frecuentemente omitidos en los análisis
tradicionales, como las emisiones y el consumo
de energía asociados al transporte de materiales,
así como las emisiones y la energía incorporada
en un material. Los resultados revelaron que,
aunque el cemento representa solo el 2.29%
de los materiales utilizados, es responsable del
79.40% de las emisiones totales y del 62.2% de
la energía incorporada. Esto reeja el extenso
proceso productivo detrás de este material y
resalta la urgencia de encontrar alternativas más
sostenibles.
En Galápagos se están adoptando prácticas
de EC en la construcción, como la producción
de ecoladrillos a partir de vidrio reciclado. Esta
iniciativa promueve el reciclaje de vidrio a través
de la recolección voluntaria y la limpieza costera.
El vidrio recolectado se transforma en polvo,
extendiendo su vida útil como materia prima para
otros procesos productivos, cumpliendo así con
los principios del ciclo técnico del diagrama de
mariposa de la EC. Además, se ha identicado
en las islas la adopción de prácticas sostenibles,
5. CONCLUSIONES
como la reutilización del agua de lluvia y la
reutilización de los desechos.
Dado que las nuevas construcciones representarán
solo el 5% del parque edicado futuro (Euroclima
y Mentefactura, 2020), se concluye que el
verdadero impacto de los ecoladrillos se podría
lograr al implementarlos en la remodelación de
las 9,627 viviendas, para mejorar su eciencia
energética. Además, deberían ser una prioridad
en las nuevas construcciones y futuros proyectos
inmobiliarios de las islas, lo que contribuiría a
cumplir la meta clave del Plan Galápagos 2030
de reducir la huella de carbono y agua de los
asentamientos humanos.
El estudio evidencia que por cada ecoladrillo
fabricado se emiten 0.297 kg de CO₂e.
Además, muestra la necesidad de materiales y
recursos: se requieren 0.0019286 de arena,
0.0001548 de cemento, 0.0041030 de
agua, 0.0000022 TJ de energía y 0.032 horas de
trabajo. La demanda de estos materiales puede
tener impactos en el ecosistema sensible de
Galápagos, como el agotamiento de las minas y
22
el agua, que es escasa en Santa Cruz y se destina
al proceso de producción en lugar de al consumo
humano. También existe la posibilidad de que, en
el futuro, los materiales reciclados, como el vidrio,
no cubran la demanda, lo que obligaría a importar
desde continente.
Los autores agradecen a la empresa
Mentefactura, a través del proyecto Living Lab de
Edicación Sostenible, a la Fundación Vive World
in Cooperation (VWC) y a la constructora GHD
6. AGRADECIMIENTOS
7. REFERENCIAS
por facilitar el levantamiento de la información
necesaria y por el respaldo brindado durante la
investigación.
Asamblea Nacional. (2019). Ley Orgánica de Eciencia Enegética. Quito: Lexis.
Asamblea Nacional. (2021). Ley Orgánica de Economía Circular Inclusiva. Quito: Registro Ocial Suplemento No.
488.
Autor, Bukkens, S., & Giampietro , M. (2020). Exploration of the environmental implications of ageing conventional
oil reserves with relational analysis. Elservier: Science of The Total Environment.
Autor, Di Felice, L., Giampietro, M., & Ramos, J. (2018). The metabolism of oil extraction: A bottom-up approach
applied to the case of Ecuador. Elservier: Energy Policy, 63-74.
Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2
emissions in cement industry. Elsevier: Journal of Cleaner Production, 142-161.
CAF. (2017). La isla Santa Cruz, Ecuador, calculó su huella de carbono para impulsar un crecimiento bajo en
emisiones. Obtenido de https://www.caf.com/es/actualidad/noticias/2017/04/santa-cruz-medira-su-huella-de-
carbono-para-impulsar-un-crecimiento-bajo-en-emisiones/
CAF. (2021). Climate Change: The New Evolutionary Challenge for the Galapagos. Green Climate Found.
CCQ. (2023). La construcción y operación genera el 38% de gases de efecto invernadero a nivel mundial. Obtenido
de https://ccq.ec/la-construccion-y-operacion-genera-el-38-de-gases-de-efecto-invernadero-a-nivel-mundial/
CENACE. (2020). Factor de emisión del Sistema Nacional Interconectado del Ecuador.
CGREG. (2019). Buque ALFA 007 reemplaza temporalmente al barco Isla Puná. Obtenido de https://www.
gobiernogalapagos.gob.ec/buque-alfa-007-reemplaza-temporalmente-al-barco-isla-puna/
CGREG. (2021). Plan de Desarrollo Sustentable y Ordenamiento Territorial del Régimen Especial de Galápagos
2030. Puerto Baquerizo Moreno, Galápagos, Ecuador.
Christensen, T., Johansen, M., Buchard, M., & Glarborg, C. (2022). Closing the material loops for construction and
23
demolition waste: The circular economy on the island Bornholm, Denmark. Resources, Conservation & Recycling
Advances.
Congreso Nacional de Medio Ambiente. (2018). Economía Circular en el sector de la construcción. Madrid.
Consulat. (2014). Estudio de Impacto Ambiental Expost y Plan de Manejo de la Operación del Buque Tanque Alfa
007 en los segmentos naviero nacional, internacional e industrial con recorrido en las provincias de Esmeraldas,
Manabí, Santa Elena, Guayas y El Oro. Guayaquil.
Dabaieh, M., Heinonen, J., El Mahdy, D., & Maguid, D. (2020). A comparative study of life cycle carbon emissions
and embodied energy between sun-dried bricks and red clay bricks. Elservier: Journal of Cleaner Production.
Dey, A., Rumman, R., Wakjira, T., Jindal, A., Bediwy, A., Islam, M., . . . Sabouni, R. (2023). Towards net-zero
emission: A case study investigating sustainability potential of geopolymer concrete with recycled glass powder
and gold mine tailings. Elsevier: Journal of Building Engineering.
DPNG. (2013). Control y Registro de Movilización de Recursos Pétreos . Obtenido de https://galapagos.gob.ec/
control_y_registro_movilizacion_recursos_petreos/
Euroclima y Mentefactura. (2020). ProDoc del proyecto “Living Lab de edicación sostenible” implementado en el
archipiélago de Galápagos. Galápagos.
Fenner, A., Kibert, C., Woo, J., Morque, S., Razkenari, M., Hakim, H., & Lü, X. (2018). The carbon footprint of
buildings: A review of methodologies and applications. Elservier: Renewable and Sustainable Energy Reviews,
1142-1152.
FFLA. (2023). Presentación de resultados del Proyecto CEELA en Ecuador para la Ecuador Green Building Week.
Cuenca.
GADM Santa Cruz. (2009). Plan De Desarrollo Y Ordenamiento Territorial Cantón Santa Cruz 2012 - 2027. Santa
Cruz.
Galapagos Conservation Trust. (2015). Energia Renovable y Construcción Sostenible. Recuperado el 2024, de
http://blog.discoveringgalapagos.org.uk/es/energia-renovable-constuccion-sostenible/
González. (2014). Energy and carbon embodied in straw and clay wall blocks produced. Elsevier: Energy and
Buildings, 15-22.
Holcim. (2021). Memoria de sostenibilidad 2019/2020.
INEC. (2015). Tabulados del Censo de Población y Vivienda – Galápagos 2015. Galápagos.
INEC. (2023). Censo Ecuador 2022 tabulados: Condiciones generales de las viviendas.
Islam, M., Noaman, M., Islam, K., & Hanif, M. (2024). Mechanical properties and microstructure of brick aggregate
concrete with raw y ash as a partial replacement of cement. Heliyon, 10.
Joyram, H., Govindan, K., & Nunkoo, R. (2022). A comprehensive review on the adoption of insulated block/eco-
block as a green building technology from a resident perspective. Cleaner Engineering and Technology.
Joyram, H., Govindan, K., & Nunkoo, R. (2024). Development of a novel psychological model to predict the eco-
block building adoption in Mauritius. Cleaner and Responsible Consumption.
24
León, A., & Guillén, V. (2020). Energía contenida y emisiones de CO2 en el proceso de fabricación del cemento
en Ecuador. Scielo Brasil.
MIDUVI. (2018). Norma Ecuatoriana de Construcción: Eciencia energética en ediciaciones residenciales (EE).
Ministerio de Desarrollo Urbano y Vivienda (MIDUVI).
MTOP. (2021). Itinerario de Transporte Marítimo de carga hacia Galápagos. Obtenido de https://www.
gobiernogalapagos.gob.ec/wp-content/uploads/downloads/2022/11/2022-10-25_Of_Nro_MTOP-SPTM-22-
714-OFSCY-SCX.pdf
Munaro, M., Tavares, S., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic
literature review on the circular economy in the built environment. Elsevier: Journal of Cleaner Production.
Pacic Cargo Line. (2020). Estudio de Impacto Ambiental Expost y Plan de Manejo Ambiental Del Proyecto
Operación del Buque de Carga Fusion 2 desde el muelle Storocean y Caraguay (Guayaquil), hacia las Islas
Galápagos, Santa Cruz-San Cristóbal. Galápagos.
Parlamento Europeo. (2023). Economía circular: denición, importancia y benecios.
Prato, A., & Schiavi, A. (2015). Sound insulation of building elements at low frequency: a modal approach.
ScienceDirect: Energy Procedia, 128 – 133.
Saez, V., & Garzón, B. (2020). Análisis de la huella de carbono en bloques resuelto conpolipropileno post-consumo.
Arquitecno, 47-55.
Urgilés, D., & Vanessa, G. (2017). Inventario del ciclo de vida para la determinación de la energía incorporada y
las emisiones de CO2 en el proceso de elaboración del bloque en una fábrica de Cuenca Ecuador . Universidad
de Cuenca.
Valencia, D. (2018). La vivienda sostenible, desde un enfoque teórico y de política pública en Colombia. Revista
Ingenierías Universidad de Medellín, 40-56.
Villota, D. (2023). Cálculo de la Huella de Carbono para la fabricación de ladrillos artesanales en la parroquia
Sinicay, Cuenca Ecuador. Cuenca: Universidad Internacional de la Rioja.
WRI, WBCSD, & SEMARNAT. (2005). Protocolo de Gases de Efecto Invernadero: Estándar corporativo de
contabilidad y reporte. México.
Zimmann, R., O’Brien, H., Hargrave, J., & Morrell, M. (2016). The Circular Economy in the Built Environment.
London: ARUP.
25
Identicación de los posibles Impactos
Ambientales de la producción de
hidrógeno verde a partir de proyectos
eólicos oshore. Caso de Estudio:
Zona Económica Exclusiva de Uruguay
Identication of Potential Environmental Impacts from
Green Hydrogen
Production through Oshore Wind Projects:
A Case Study in Uruguay’s
Exclusive Economic Zone
Luisa Rivas
1
, Alice Elizabeth González
2
, Alejandro Gutierrez
3
Recibido: 02/10/2024 y Aceptado: 03/12/2024
1.- Universidad de la Republica del Uruguay luisarivas10@gmail.com ORCID: 0009-0002-5662-2573
2.- Universidad de la Republica del Uruguay elizabet@ng.edu.uy ORCID: 0000-0002-2827-5052
3.- Universidad de la Republica del Uruguay aguti@ng.edu.uy ORCID: 0000-0002-0769-3861
26
27
El presente trabajo identica los potenciales impactos ambientales de la producción de hidrógeno
verde en proyectos eólicos oshore en la Zona Económica Exclusiva de Uruguay. El Hidrógeno verde es
una alternativa para descarbonizar el sector energético. La eólica oshore, dado la potencia nominal de
los aerogeneradores, ofrece mayor potencial de generación eléctrica, pero conlleva mayores costos y
complejidades técnicas. Se examinan las actividades durante las etapas de desarrollo, construcción y
operación. A partir de la revisión de investigaciones ambientales sobre proyectos similares, se identican
los impactos ambientales principales en cada fase. Durante el desarrollo, se observan impactos
como aumento de ruido, vibraciones y alteraciones en el lecho marino debido a estudios geofísicos y
geotécnicos. En construcción, el dragado y la instalación de fundaciones y cables pueden suspender
sedimentos, afectar la calidad del agua y aumentar el ruido afectando la fauna marina. En operación,
los impactos incluyen colisiones de aves y aumento del ruido submarino. La desalinización del agua
puede alterar la calidad del agua, pero conserva los recursos hídricos terrestres.
Esta investigación busca ofrecer una visión integral que sirva de base para la toma de decisiones de los
responsables de políticas, los desarrolladores de proyectos y actores clave.
This paper analyzes the potential environmental impacts of green hydrogen production in oshore wind
projects in Uruguay’s Exclusive Economic Zone. Green hydrogen is an alternative for decarbonizing the
energy sector, although its production requires signicant resources. Oshore wind, given the nominal
power of the turbines, oers greater electricity generation potential but involves higher costs and technical
complexities. The activities during the development, construction, and operation phases are identied.
Based on a review of environmental research on oshore wind projects and green hydrogen production,
the main environmental impacts in each phase are identied. During development, impacts such as
increased noise, vibrations, and alterations to the seabed due to geophysical and geotechnical studies
are observed. In construction, dredging and the installation of foundations and cables can resuspend
sediments, aect water quality, and increase noise, impacting marine fauna. During operation, impacts
include bird collisions and increased underwater noise. Desalination of water may alter the salinity and
oxygenation of the water but preserves terrestrial water resources. Other impacts include noise and the
risk of gas leaks. This research aims to provide a comprehensive perspective that can serve as a basis
for decision-making by policymakers, project developers, and other key stakeholders.
PALABRAS CLAVE: Hidrógeno Verde, Impacto Ambiental, Energía Eólica Oshore, Electrólisis,
desalinización, Uruguay.
KEYWORDS: Green Hydrogen, Environmental Impact, Oshore Wind Energy, Electrolysis, Desalina-
tion, Uruguay.
Resumen
Abstract
1. INTRODUCCIÓN
2. METODOLOGÍA APLICADA
En los últimos años, el cambio climático y la
demanda de fuentes de energía sostenibles
han incrementado el interés en tecnologías
renovables y bajas en emisiones de gases
de efecto invernadero como la energía eólica
oshore y la producción de Hidrógeno (H2) verde.
Esta investigación explora dichas tecnologías,
especícamente en la Zona Económica Exclusiva
(ZEE) de Uruguay para identicar sus posibles
impactos ambientales. El H2 verde, producido
mediante la electrólisis del agua con electricidad
de fuentes renovables, es un vector energético
con bajas emisiones y potencial para aplicaciones
industriales, de transporte y almacenamiento de
energía. Ofrece una forma eciente de almacenar
energía e integrarse en infraestructuras energéticas
existentes. Por otro lado, la energía eólica
oshore, que aprovecha los vientos marinos, es
una alternativa con bajas emisiones y ha avanzado
con mejoras en la eciencia de aerogeneradores
y técnicas de construcción y mantenimiento.
Uruguay, con su amplia costa, buenos recursos
naturales y experiencia en energías renovables, es
Este estudio busca identicar los impactos
ambientales de proyectos de hidrógeno verde
y energía eólica oshore mediante una revisión
bibliográca que integra aspectos técnicos,
ambientales y normativos. La metodología se
El hidrógeno verde se produce mediante
electrólisis, un proceso que separa el agua en
hidrógeno y oxígeno utilizando un electrolizador.
Para garantizar bajas emisiones de CO2, y
ser catalogado como “verde” este proceso
requiere energía eléctrica proveniente de fuentes
renovables. (Goldman Sachs International, 2022).
La energía eólica oshore se reere a la generación
de electricidad a partir de aerogeneradores
un candidato ideal para implementar proyectos de
H2 verde y energía eólica oshore. La investigación
tiene como objetivo principal identicar los
impactos ambientales de este tipo de proyectos
oshore dentro de la ZEE de Uruguay. Se llevará a
cabo una revisión bibliográca detallada sobre los
conceptos de generación eólica y producción de
H2 verde, tecnologías especícas, procedimientos
de operación y mantenimiento, como también
estudios de caracterización ambiental de la
ZEE, para posteriormente realizar el análisis e
identicación de los impactos potenciales en
el medio físico, biótico y antrópico que pueden
ocurrir en cada fase de un proyecto e identicar
cuáles son los factores ambientales que pueden
verse más afectados. Estos resultados podrían
proporcionar una visión integral para ser usados
como base de partida en análisis especícos
e informar a responsables de políticas y
desarrolladores de proyectos.
estructuró en cuatro fases principales: revisión
de conceptos básicos, revisión de tecnologías,
evaluación de estudios ambientales previos e
identicación de impactos clave.
2.1. Conceptos básicos del Hidrógeno Verde y la Energía Eólica oshore
instalados en masas de agua, normalmente en
océanos o grandes lagos. A diferencia de la energía
eólica terrestre, los parques eólicos oshore se
construyen en áreas costeras o en alta mar, es
en general una ventaja que la potencia nominal
de los aerogeneradores oshore es superior a la
onshore. (Letcher, 2017).
29
Se realizó una revisión detallada de las tecnologías
utilizadas en proyectos eólicos oshore y de H2
verde, evaluando sus actividades durante las
fases de desarrollo, construcción y operación de
los proyectos, considerando las siguientes áreas
clave:
La etapa de desarrollo de un proyecto eólico
oshore incluye todas las actividades previas al
cierre nanciero, lo que puede llevar hasta tres
años (BVG Associates, 2019). Un componente
crítico es el Estudio de Impacto Ambiental, que
implica levantamiento de líneas base y estudios
especícos sobre clima, ruido, fauna marina,
avifauna, hábitats, navegación, pesca, y aspectos
socioeconómicos.
Los estudios del recurso eólico y datos
metoceánicos evalúan la velocidad del viento a
alturas aproximadas de 150-250 metros sobre
el nivel del mar mediante torres meteorológicas,
anemómetros y sistemas remotos como lidars
a) Aerogeneradores Oshore: Los aerogeneradores
oshore son más grandes y potentes que los
terrestres, alcanzando capacidades de hasta 16
MW, como el modelo Goldwind GWH252-16 MW
con rotores de 250 metros de diámetro (TGS New
Energy, 2024). Su diseño maximiza la generación
eléctrica en áreas reducidas, aprovechando
vientos constantes en alta mar. No obstante,
el transporte e instalación de componentes
voluminosos y pesados plantean desafíos
logísticos, que además enfrentan condiciones
extremas del entorno marino, como la corrosión,
las fuertes corrientes y el oleaje.
b) Fundaciones: Las fundaciones proporcionan
estabilidad estructural y se clasican en jas
y otantes. Las jas, como los monopilotes y
estructuras tipo jackets, son adecuadas para
aguas poco profundas (0-80 m). Las otantes,
2.2. Análisis de Tecnologías Asociadas
2.2.1 Etapa de Desarrollo
2.2.2. Análisis de Tecnologías
y boyas metoceanográcas. Estos datos son
esenciales para determinar la viabilidad técnica del
proyecto. Los estudios geofísicos, geotécnicos e
hidrológicos emplean técnicas no invasivas como
sondeos sísmicos y batimetría para mapear el
lecho marino. También se realizan perforaciones y
pruebas de penetración para caracterizar el suelo
y planicar las rutas de cableado submarino,
asegurando la estabilidad y viabilidad de las
instalaciones (BVG Associates, 2019).
ancladas mediante cables o tensores, permiten
proyectos en aguas más profundas, expandiendo
la viabilidad de parques eólicos en diversas
regiones (Fan et al., 2022).
c) Cableado Submarino y Subestaciones: El
cableado de media y alta tensión conecta los
aerogeneradores a subestaciones oshore y a
tierra rme. Estas subestaciones transforman la
electricidad de media a alta tensión, mejorando
la eciencia del transporte energético. Su diseño
robusto debe resistir la exposición a corrientes
marinas y condiciones adversas (Rodríguez,
2020).
d) Electrólisis y Almacenamiento: La electrólisis es
un proceso químico que utiliza energía eléctrica
para descomponer agua en sus componentes
básicos, hidrógeno y oxígeno. La tecnología PEM
30
destaca en la producción de H2 verde, siendo
viable para fuentes renovables intermitentes
gracias a su exibilidad y alta pureza del H2.
Sin embargo, los costos elevados y los desafíos
de almacenamiento, como la fragilización de
materiales y el manejo de residuos químicos,
requieren soluciones integradas para garantizar
sostenibilidad y seguridad operativa (Calado &
Castro, 2023).
e) Operación y mantenimiento: La fase de operación
y mantenimiento (O&M) de parques eólicos
oshore es esencial para garantizar su eciencia y
longevidad. Este proceso incluye mantenimiento
planicado y no planicado. El primero se realiza
periódicamente, siguiendo un calendario de
inspecciones visuales, revisiones mecánicas y
reemplazo de componentes desgastados para
prevenir fallos. El segundo abarca reparaciones
emergentes derivadas de daños por tormentas,
fallos electrónicos o mecánicos inesperados, que
requieren una rápida movilización de equipos
especializados (Thomsen, 2012).
En proyectos de hidrógeno verde, el O&M
incluye la desalinización de agua para electrólisis,
compresión y almacenamiento del hidrógeno, así
como la eliminación segura de residuos líquidos
y sólidos generados durante las operaciones,
asegurando la sostenibilidad del sistema (Calado
& Castro, 2023).
Para avanzar con la identicación de los impactos
ambientales se evaluaron y listaron las actividades
en cada etapa del proyecto (desarrollo,
construcción y operación) determinando los
medios y factores ambientales asociados a cada
actividad. De acuerdo con Zaror (2000), los
factores ambientales son diversos componentes
del ambiente susceptibles de ser modicados por
la acción humana.
La revisión de publicaciones cientícas identicó
los principales impactos ambientales asociados a
proyectos eólicos oshore y de hidrógeno verde:
Aves y Mamíferos Marinos:
Desplazamiento, colisiones y alteración
de hábitats debido a la construcción y
operación, con impactos acumulativos
entre proyectos cercanos.
Peces y Comunidades Bentónicas:
Modicación de comunidades por
sustratos duros y arrecifes articiales, con
benecios locales, pero riesgos de
perturbaciones.
• Impactos de la producción de Hidrógeno
Verde: Impactos por demanda de agua,
descargas de salmuera y uso de metales
2.3. Revisión de literatura cientíca y resultados de otros proyectos similares
2.4. Identicación de Impactos Ambientales
raros, junto con riesgos de contaminación
por fugas químicas.
Comunidades Locales: Afectación de la
pesca artesanal, conictos por el espacio
marítimo y presión sobre servicios por
trabajadores externos.
Estos hallazgos establecen un marco para
abordar impactos clave en futuros proyectos en
la ZEE de Uruguay.
Los factores ambientales que se evaluarán dentro
de cada Medio son los siguientes:
Factores evaluados dentro del Medio
Físico: Lecho Marino / Suelo, niveles
sonoros ambientales, calidad del agua
supercial, calidad del aire, temperatura del
agua supercial e hidroquímica, presiones
sobre los recursos naturales.
31
Factores evaluados dentro del Medio
Biótico: Fauna: Plancton, Bentos, Necton,
Peces, Aves, Reptiles, Mamíferos Marinos,
Cefalópodos; y ora acuática y ora
supercial.
Factores evaluados dentro del Medio
Antrópico: Paisaje, Pesca, navegación y
tráco marítimo y terrestre.
A continuación, se identicó la relación de cada
actividad del proyecto con los efectos potenciales
en el Medio, así como los impactos ambientales
en sus diferentes etapas. La Figura 1. muestra un
Posteriormente, con los resultados de las tablas
obtenidas, se analizaron los impactos ambientales
en función de su grado de incidencia, determinando
cuáles son los que aparecen con mayor frecuencia
pudiendo ocasionar mayor afectación en cada
fase del proyecto y así determinar cuáles son los
medios y factores ambientales más afectados.
La estrategia de evaluación utilizada integra
aspectos técnicos y ambientales, identicando
las actividades e impactos ambientales más
relevantes en cada fase del proyecto. Este enfoque
no solo facilita la identicación de impactos clave
en una fase temprana, sino que también ofrece
una base inicial para la toma de decisiones en el
Figura 1. Sección de la tabla “Actividades que pueden ocurrir en la fase de desarrollo
del proyecto, con sus posibles impactos y factores ambientales relevantes”.
Fuente: elaboración propia.
diseño de medidas de mitigación adaptadas a las
condiciones locales, apoyando la sostenibilidad
de proyectos en Uruguay y en contextos similares.
Estudios
geotécnicos
y geofísicos
Alteración de Fauna
marina
Alteración del lecho
marino
Aumento de los niveles
de ruido
Biótico
Biótico
Físico
Vinculación
Los estudios geotécnicos y geofísicos pueden ocasionar
alteración de fauna marina por pertubaciones durante
los momentos de muestro.
Durante la elaboración de los estudios geotécnicos
puede ocurrir posible remoción del lecho marino en
diferentes áreas de estudio (Subsea Working Group, 2000)
Factor ambiental
MedioImpacto ambientalActividad
ejemplo de una sección de las tablas utilizadas
para la identicación de impactos durante cada
fase del proyecto.
32
3. RESULTADOS OBTENIDOS:
Con base en la información de la caracterización
ambiental de la ZEE, se establecieron criterios para
delimitar áreas factibles para proyectos y sugerir
un área viable. Debido a limitaciones tecnológicas
de las fundaciones jas, se seleccionaron áreas
hasta profundidades máximas de 100 m, también
se excluyeron áreas protegidas a nivel nacional,
rutas de buques mercantes y zonas pesqueras.
La Figura 2 ilustra esta delimitación. Un mayor
detalle en la delimitación necesitará de un análisis
exhaustivo de la información tomando en cuenta
muchos más elementos del entorno marino.
A continuación, se presentarán los principales
impactos ambientales identicados que pueden
afectar la ZEE de Uruguay, para cada fase del
proyecto.
La fase de desarrollo involucra una serie de
actividades que incluyen estudios oceanográcos,
sísmicos, geofísicos, geotécnicos y la instalación de
infraestructuras como torres de medición de viento
y boyas (BVG Associates, 2019). A continuación,
3.1. Identicación de los impactos ambientales en un proyecto ubicado en la Zona Económica
Exclusiva del Uruguay
3.2. Fase de desarrollo
Figura 2. Delimitación de la Zona factible para proyectos eólicos oshore dentro de la ZEE.
Fuente: elaboración propia.
en la Figura 3 se muestran los resultados de los
principales impactos ambientales asociados con
estas actividades.
33
Los impactos ambientales más relevantes están
relacionados con el medio biótico, siendo la fauna
marina la más afectada. Los niveles de ruido
generados por estudios geofísicos y geotécnicos
son una preocupación principal, ya que estos
pueden alterar comportamientos, causar daños
físicos y afectar la reproducción y comunicación
de diversas especies. Estudios como los sísmicos
de aire comprimido y los de alta resolución
(HRG) generan pulsos sonoros que penetran
el subsuelo, lo que puede impactar de forma
signicativa a peces, mamíferos marinos, tortugas
y cefalópodos (BOEM, 2018) que pueden estar
presentes en la ZEE de Uruguay.
El aumento del tráco marítimo asociado a las
actividades de exploración también incrementa
el riesgo de colisiones con fauna marina,
particularmente mamíferos y aves, y contribuye
al ruido submarino, afectando patrones
migratorios y de comportamiento de las especies
(Congressional Research Service, 2024).
Adicionalmente, las actividades de instalación,
como la colocación de bases para torres de
medición de vientos, pueden generar remoción de
sedimentos, perturbando los hábitats del fondo
marino y afectando comunidades de plancton y
bentos, lo que puede alterar la red tróca.
Figura 3. Principales impactos ambientales identicados en la Fase de Desarrollo.
Fuente: elaboración propia.
Especies como cefalópodos pueden experimentar
daños en sus estatocistos, esenciales para su
equilibrio, cuando se exponen a sonidos de
baja frecuencia (50-400 Hz) y niveles de presión
sonora de hasta 175 dB pico (Oisín, Rogério &
Coca, 2023).
Otros impactos identicados incluyen la afectación
de la calidad del agua debido a derrames
accidentales de embarcaciones o al movimiento
de sedimentos, y la alteración de la calidad del
aire por emisiones de los equipos y transporte
marítimo. Estas alteraciones pueden dañar
ecosistemas y disminuir la biodiversidad del área
de estudio (Zhou, 2019). Finalmente, aunque de
menor frecuencia, la alteración del paisaje marino,
inuenciada por el tráco marítimo y la presencia
de estructuras temporales, puede afectar la
calidad del paisaje, como también la interacción
de aves y mamíferos marinos con sus hábitats. Es
esencial considerar estos impactos acumulativos
y sus efectos sinérgicos durante esta etapa para
garantizar una planicación sostenible, en especial
si se pretenden desarrollar distintos proyectos al
mismo tiempo en la ZEE.
34
3.2.1. Medidas de Mitigación
3.2.2. Fase de construcción
Las medidas de mitigación propuestas se centran
en minimizar los impactos en el medio biótico
y físico durante la etapa de desarrollo. Para
proteger el medio biótico, se sugiere implementar
monitoreo visual de mamíferos marinos y
monitoreo acústico pasivo mediante hidrófonos
para detectar fauna cercana. Se recomienda
establecer zonas de exclusión acústica alrededor
de las embarcaciones y utilizar inicios suaves (soft
starts) para aumentar gradualmente la potencia
de las fuentes acústicas, permitiendo que los
animales marinos se alejen del área antes de
alcanzar niveles de ruido altos (BOEM, 2018).
Además, se deben realizar pruebas preliminares
de calibración de equipos para minimizar el uso
innecesario de potencia y ruido.
La planicación temporal y espacial es clave, evitando
actividades durante las temporadas de desove y cría,
así como minimizando la superposición de estudios
en áreas cercanas para permitir la recuperación
de las poblaciones marinas. También se sugiere
implementar cierres temporales y espaciales en
hábitats críticos y rutas migratorias, especialmente
para ballenas y tortugas. Es fundamental realizar
estudios de línea de base con campañas de
muestreo estacionales para establecer referencias
detalladas del entorno marino.
Para el medio físico, las medidas incluyen la
contención y prevención de derrames mediante
barreras físicas, planes de respuesta rápida y
equipos especializados. Se recomienda reducir
las emisiones atmosféricas de las embarcaciones
mediante tecnologías como ltros de partículas
y catalizadores, además de optimizar rutas
y operaciones para disminuir el tiempo de
funcionamiento de motores y maquinaria.
En cuanto al medio antrópico, se enfatiza la
planicación de tráco marítimo mediante la
denición de rutas seguras y velocidades máximas
para reducir el riesgo de colisiones con fauna
marina y minimizar el ruido submarino.
Durante la fase de construcción los impactos
ambientales más relevantes están asociados con
alteraciones signicativas en los ecosistemas
marinos. A continuación, en la Figura 4 se
muestran los resultados de los principales
impactos identicados durante esta fase.
Figura 4. Principales impactos ambientales identicados en la Fase de Construcción.
Fuente: elaboración propia.
35
Entre los impactos más destacados se
encuentra el aumento del ruido submarino,
generado principalmente durante la instalación
de fundaciones mediante martillos hidráulicos o
percutores vibratorios. Este ruido puede inducir
comportamientos de evitación en mamíferos
marinos como delnes, ballenas y lobos marinos,
además de causar daños físicos en tejidos
auditivos y otros órganos de peces y cefalópodos,
todas estas especies presentes en la ZEE. La
sensibilidad de estas especies al sonido, esencial
para su navegación, búsqueda de alimento y
comunicación, hace que estos impactos sean
especialmente críticos (T. Aran Mooney, 2020). Las
actividades relacionadas con el pilotaje también
modican el comportamiento de especies marinas
a grandes distancias y pueden alterar patrones
migratorios clave.
La instalación de cables y estructuras
submarinas afecta considerablemente a los
hábitats bentónicos, desplazando sedimentos,
aumentando la turbidez del agua y modicando
la biodiversidad local. Estas alteraciones pueden
perjudicar a organismos como poliquetos,
crustáceos y equinodermos, esenciales para las
dinámicas ecológicas del fondo marino. Además,
la turbidez incrementada afecta la penetración
de luz, reduciendo la fotosíntesis del toplancton
y alterando las cadenas trócas marinas (Van
Hoey, 2018). Según Köller (2006), los impactos
en fondos arenosos pueden favorecer especies
de fondos duros, pero eliminan hábitats blandos y
afectan la biodiversidad asociada.
La calidad del agua enfrenta riesgos signicativos
debido a derrames operativos o accidentales de
combustibles, liberación de sedimentos y posibles
contaminantes provenientes de las actividades de
construcción. Estas alteraciones hidroquímicas y
físicas pueden dañar directamente a las especies
acuáticas y generar impactos a largo plazo
en los ecosistemas marinos. Paralelamente,
las emisiones atmosféricas generadas por
maquinaria pesada, buques y equipos de
soldadura contribuyen a la contaminación del aire,
afectando tanto a las comunidades locales como
a la biodiversidad costera (Thomsen, 2012).
El incremento del tráco marítimo y terrestre
durante la construcción añade complejidad a los
impactos. El transporte continuo de materiales
y equipos aumenta el riesgo de colisiones entre
embarcaciones y especies marinas como tortugas,
aves y mamíferos marinos. Estas colisiones
pueden causar lesiones graves o mortales, y el
ruido generado por el tráco marítimo afecta
aún más a la fauna marina, especialmente a
especies dependientes del sonido (Byrnes &
Dunn, 2020). Las restricciones de navegación
impuestas para garantizar la seguridad durante
la construcción también pueden interferir
con actividades económicas como la pesca,
afectando directamente los medios de vida de las
comunidades locales (Van Hoey, 2018).
Otro impacto relevante es la presión sobre los
recursos naturales debido al consumo intensivo
de materiales como acero, concreto, cobre y
otros metales esenciales para las estructuras y
membranas de los electrolizadores. Este consumo
genera una huella signicativa de gases de
efecto invernadero durante la producción de
estos materiales, incrementando los impactos
ambientales del proyecto (Condon, 2023).
Además, la generación de residuos, incluyendo
materiales de construcción y aceites usados,
plantea desafíos en su gestión, destacando
la necesidad de sistemas adecuados para
su recolección, reciclaje y eliminación segura
(Thomsen, 2012).
Finalmente, la congestión de servicios logísticos,
como los puertos, representa un desafío
tanto técnico como ambiental. La selección
inadecuada de puertos puede generar demoras
signicativas en las operaciones logísticas y
conictos con las comunidades costeras debido
a impactos visuales y restricciones en el acceso
a áreas públicas (Thomsen, 2012). A pesar de
estos desafíos, la fase de construcción también
ofrece oportunidades de generación de empleo
y desarrollo económico local, creando empleos
directos e indirectos en sectores como la
logística, los servicios y la construcción, lo que
puede contribuir positivamente al bienestar de las
comunidades cercanas.
36
3.2.3. Medidas de Mitigación
La mitigación de los impactos ambientales durante
la fase de construcción incluye un conjunto
integral de medidas. Para reducir el impacto del
ruido submarino, se propone el uso de pingers,
dispositivos acústicos que emiten señales fuertes
para alejar a los mamíferos marinos de las áreas
de construcción, evitando daños en su sistema
auditivo y posibles lesiones permanentes.
Además, las cortinas de burbujas ofrecen una
barrera acústica al generar burbujas con aire
presurizado, disminuyendo la transmisión de ruido
bajo el agua, aunque su ecacia depende de las
condiciones del entorno marino (Thomsen, 2012,
pág. 288). Asimismo, los sistemas de propulsión
a chorro son recomendados para embarcaciones,
ya que reducen el riesgo de lesiones en tortugas
marinas y otras especies debido a la ausencia de
hélices (Byrnes & Dunn, 2020).
Se deben implementar planes de contingencia
que gestionen posibles derrames de aceites y
sustancias contaminantes, y se debe minimizar
el uso de generadores eléctricos temporales
que utilicen combustibles fósiles (Thomsen,
2012). También es recomendable utilizar
materiales no contaminantes, como cables libres
de hidrocarburos, para evitar la liberación de
sustancias tóxicas al entorno marino, protegiendo
la fauna y ora local (Bastien et al., 2018). La
planicación estratégica de actividades puede
prevenir impactos acumulativos al coordinar
varias obras simultáneas en una misma región
(Thomsen, 2012).
En relación con el lecho marino, se recomienda
planicar cuidadosamente las rutas de los cables
submarinos para evitar áreas ecológicamente
sensibles, así como enterrar los cables a
profundidades que minimicen la exposición de las
especies marinas a campos electromagnéticos y
calor. Esto protege organismos como tiburones,
rayas y peces diádromos presentes en la ZEE,
además de reducir el riesgo de interacción
negativa con la vida marina (Bastien et al., 2018).
Es fundamental establecer restricciones de
navegación y zonas de seguridad para evitar
colisiones entre embarcaciones el proyecto.
Además, se debe prohibir la pesca de arrastre
en las áreas del proyecto para evitar accidentes.
La participación del sector pesquero en la
planicación permite minimizar conictos y
asegurar un diseño que facilite la coexistencia
de las actividades pesqueras y el proyecto eólico
(Van Hoey, 2018).
La gestión de residuos es clave para minimizar
la contaminación. Todos los desechos deben ser
recolectados, reciclados o eliminados siguiendo
regulaciones, como el principio de cero descargas
utilizado en aguas alemanas, que obliga a
retornar a tierra todo lo que no quede jado en las
estructuras oshore (Thomsen, 2012).
Finalmente, es esencial planicar puertos
con suciente capacidad para manejar los
componentes del proyecto, establecer áreas de
almacenamiento amplias, entre 60,000 y 70,000
m2 para proyectos de aproximadamente 80
aerogeneradores (Thomsen, 2012), y evitar la
construcción en áreas sensibles desde el punto
de vista turístico o ecológico. La implementación
de centros de coordinación de tráco garantiza
un ujo eciente de materiales y personal,
minimizando la congestión y los accidentes en
zonas marítimas y terrestres. Además, la gestión
eciente del uso de combustibles y lubricantes,
junto con la documentación detallada del
consumo de recursos, contribuye a una operación
más sostenible y a reducir la huella de carbono del
proyecto (Thomsen, 2012).
37
La fase de operación implica una serie de
actividades continuas que pueden generar
impactos ambientales signicativos tanto al
medio físico y biótico como al medio antrópico.
Entre los principales impactos identicados se
encuentra la mortalidad o lesiones de aves y
especies marinas por colisiones con las palas de
los aerogeneradores o con las embarcaciones
utilizadas en actividades de mantenimiento. Las
aves migratorias, en particular, enfrentan un
riesgo elevado debido a la altura y extensión de
las turbinas, mientras que mamíferos marinos
y tortugas pueden sufrir lesiones graves al
interactuar con las estructuras (Exo et al., 2003;
Ibon et al., 2022).
Otro impacto importante es el aumento del ruido
y las vibraciones, que afecta negativamente
a la fauna marina. Este ruido proviene tanto
de la operación de los aerogeneradores y
los electrolizadores como de los sistemas de
transmisión eléctrica y compresión, con efectos
acumulativos que pueden alterar los patrones de
comportamiento y migración de la fauna marina
(European Industrial Gases Association, 2018).
Los cables submarinos generan campos
electromagnéticos y aumentan la temperatura del
3.3. Fase de Operación
En la Figura 5 se detallan los principales impactos
identicados durante esta fase.
Figura 5. Principales impactos ambientales identicados en la Fase de Operación.
Fuente: elaboración propia.
agua, lo que puede afectar a especies sensibles
y alterar las condiciones térmicas del entorno.
Adicionalmente, en caso de roturas, los cables
podrían liberar sustancias contaminantes al
lecho marino, afectando la calidad del agua y los
ecosistemas locales (Bastien et al., 2018).
La desalinización del agua, necesaria para
los sistemas de electrólisis genera salmuera,
cuya descarga puede alterar la salinidad y la
oxigenación del agua, impactando negativamente
a los hábitats bentónicos y la fauna marina.
Además, el uso de productos químicos en estos
procesos puede incrementar la toxicidad del agua
marina (Soliman, 2021).
El tráco marítimo intensicado para mantenimiento
incrementa el riesgo de colisiones con fauna
marina y puede interferir con rutas de migración y
actividades pesqueras. Esto último afecta tanto a
la pesca industrial como a la artesanal, limitando el
acceso a áreas tradicionales de pesca y provocando
conictos en el sector (Van Hoey, 2018).
38
En el ámbito terrestre, la instalación de sistemas
de electrólisis onshore puede impactar el paisaje
costero, transformar áreas en zonas industriales
y generar riesgos de contaminación de acuíferos
debido a posibles fugas de concentrados salinos
y químicos tratados (Gurudeo, 2007).
Entre los impactos positivos se incluye la
creación de nuevos ecosistemas debido a las
estructuras marinas, que pueden actuar como
Las medidas se centran en reducir los efectos
negativos sobre la fauna marina, las aves, los
recursos naturales y el entorno físico. Para
prevenir la mortalidad de aves y murciélagos por
colisión, se recomienda la instalación de sistemas
disuasorios visuales y acústicos, como pintar
una pala de los aerogeneradores de negro para
aumentar su visibilidad, lo que ha demostrado
reducir las colisiones hasta en un 70%, y el uso
de señales acústicas o ultrasónicas para alejar
especies vulnerables (Renewable Energy Wildlife
Institute, 2024). Además, se propone la reducción
o apagado selectivo de aerogeneradores en
momentos críticos de alto riesgo, utilizando
tecnología de radar e inteligencia articial
para detectar aves y activar estas medidas
automáticamente.
Para minimizar el impacto en la fauna marina, se
sugiere el enterramiento de cables submarinos para
reducir la exposición a campos electromagnéticos,
además de usar cables trifásicos AC o sistemas
HVDC bipolares con blindajes adecuados (Bastien
et al, 2018). También se recomienda implementar
tomas de agua subsuperciales (depende de la
región) en los procesos de desalinización, lo que
disminuye el riesgo de atrapamiento de
organismos marinos durante la toma de agua
(Missimera, 2017). En cuanto a la iluminación,
se sugiere utilizar sensores de movimiento y
temporizadores para controlar la duración de la
exposición lumínica, minimizando su impacto en
la vida silvestre y los hábitats marinos (Byrnes &
Dunn, 2020).
arrecifes articiales, favoreciendo la biodiversidad
local. Además, la generación de empleo en
sectores relacionados con la energía renovable
y el hidrógeno verde constituye un benecio
socioeconómico signicativo (Congressional
Research Service, 2024).
3.3.1. Medidas de Mitigación
En el manejo de residuos líquidos, se plantean
sistemas de tratamiento de aguas residuales para
eliminar impurezas generadas en los procesos
operativos y evitar la contaminación del agua.
Para la gestión de salmuera derivada de la
desalinización, se proponen sistemas de difusión
diseñados para diluir la concentración salina y
minimizar sus efectos sobre los ecosistemas
bentónicos (Missimera, 2017). En cuanto al ruido
y las vibraciones generadas por los equipos
de electrolisis y compresores, se recomienda
el aislamiento acústico de los mismos, el uso
de cabinas insonorizadas y el mantenimiento
planicado para evitar la acumulación de impactos
en el medio marino (Stocker, 2023).
Además, se sugiere un enfoque de planicación
estratégica para fomentar la coexistencia entre
proyectos y actividades pesqueras, estableciendo
restricciones especícas para técnicas de pesca
de alto impacto como el arrastre, pero evaluando
opciones para permitir métodos de pesca pasiva
(Van Hoey, 2018). Por último, se recomienda el
diseño adecuado de instalaciones para el manejo
seguro de hidrógeno, incluyendo códigos y
normas estrictas que minimicen riesgos de fugas
e incendios (Chris LaFleur, 2023).
39
En Uruguay, las zonas entre 20 y 100 metros de
profundidad dentro de la ZEE son técnicamente
viables para la instalación de proyectos eólicos
oshore, sin embargo, hay que delimitar muy bien
las áreas para evitar afectar zonas protegidas
o de interés cultural.
En la fase de desarrollo los impactos ambientales
se concentran en el medio biótico. Las actividades
preliminares, como estudios geofísicos y
geotécnicos, generan ruido y alteran el lecho
marino, afectando a especies como mamíferos
marinos, peces y tortugas. Los equipos utilizados
en estas investigaciones son invasivos, y los
niveles de ruido pueden perturbar los patrones de
comunicación y migración de ballenas y delnes,
así como interferir en el comportamiento de otras
especies marinas dentro de la ZEE.
En la construcción, actividades como el dragado
y la instalación de cables submarinos alteran la
turbidez del agua y liberan sedimentos, afectando
la calidad del hábitat marino. El uso de martillos
hidráulicos para fundaciones genera ruido y presión
sonora, perjudicando a mamíferos marinos,
peces y cefalópodos. Estas actividades también
incrementan el tráco marítimo, aumentando
el riesgo de colisiones y afectaciones a la fauna
marina.
En la operación, uno de los impactos más
relevantes es la mortalidad de aves por colisiones
con aerogeneradores. Las vibraciones y ruidos
submarinos también afectan a la fauna marina,
alterando patrones de comportamiento,
reproducción y migración. Además, la
desalinización necesaria para la electrólisis
produce euentes de alta salinidad y residuos
químicos que alteran la calidad del agua y pueden
impactar ecosistemas locales. Los campos
electromagnéticos generados por los cables
submarinos, aunque con efectos menores,
también pueden interferir en especies sensibles.
Para mitigar estos impactos, se proponen medidas
que se han utilizado exitosamente en otros
4. CONCLUSIONES Y RECOMENDACIONES
proyectos, como el uso de cortinas de burbujas
para reducir ruido, enterramiento de cables para
minimizar campos electromagnéticos, y sistemas
de tratamiento para gestionar adecuadamente
los euentes de desalinización. Además,
estrategias como la planicación espacial y la
implementación de tecnologías más ecientes
buscan reducir impactos acumulativos y promover
la sostenibilidad del entorno marino.
Los proyectos también pueden presentar impactos
positivos. Las estructuras oshore actúan como
arrecifes articiales, fomentando la biodiversidad
al ofrecer hábitats a diversas especies marinas.
Este efecto positivo puede generar oportunidades
económicas adicionales, como el ecoturismo y
la investigación cientíca. Además, el desarrollo
y operación de los proyectos oshore generan
empleo en sectores como ingeniería, logística,
mantenimiento y desarrollo tecnológico,
impulsando industrias locales y creando un efecto
multiplicador en la economía.
Este estudio sugiere un enfoque integral para el
desarrollo sostenible de proyectos de energía
eólica oshore y producción de hidrógeno
verde en Uruguay. Las recomendaciones clave,
partiendo de las lecciones aprendidas en otras
regiones son:
40
En Uruguay, la falta de regulaciones especícas
para este tipo de proyectos resalta la necesidad
de establecer normativas claras desde las
etapas iniciales de planicación. Se recomienda
adoptar estándares internacionales y aprender
de la experiencia de países en el sector, como
Dinamarca y el Reino Unido. Dinamarca, con
su planicación espacial marina y procesos
de licitación competitivos, ha desarrollado un
modelo exitoso para el crecimiento sostenible de
la energía eólica oshore. Por su parte, el Reino
Unido, mediante instituciones como el Crown
Estate y políticas como el Oshore Wind Sector
Deal, ha promovido la colaboración público-
privada, reduciendo costos e incrementando la
capacidad instalada (UK Government, 2020).
Estados Unidos también ofrece un modelo
basado en la planicación espacial y subastas de
derechos gestionadas por el BOEM, equilibrando
el desarrollo con la protección de otras actividades
marinas (BOEM, 2024).
Para desarrollar proyectos oshore es
fundamental obtener diversos permisos,
incluyendo concesiones para el uso del espacio
marítimo, autorizaciones para generación de
Se recomienda que Uruguay inicie el desarrollo
de proyectos oshore con la implementación de
una MSP con un enfoque estratégico diseñado
para regular los entornos marinos mediante la
zonicación y la conciliación de diversos usos
del mar. La MSP busca facilitar el desarrollo
sostenible de actividades marítimas, minimizando
conictos y acelerando los procesos de permisos
al involucrar a múltiples partes interesadas desde
las etapas iniciales (GWEC & IRENA, 2023).
La MSP promueve la colaboración entre actores
clave, como la industria energética, organismos
gubernamentales, sectores de conservación y
comunidades locales, para tomar decisiones
coordinadas e informadas. Organismos
internacionales como la UNESCO, en colaboración
con la Unión Europea, han desarrollado guías de
4.1. Marco Regulatorio Integral:
4.2. Planicación Espacial Marina (MSP, por su sigla en inglés):
electricidad, acuerdos de conexión a la red,
permisos ambientales y licencias relacionadas con
trabajos en tierra y operación de infraestructura.
La ausencia de un enfoque coordinado en la
gestión de estos permisos puede provocar
retrasos signicativos, aumentando el riesgo
y la complejidad del proyecto. Por ello, se
requiere un sistema eciente, con coordinación
interinstitucional, simplicación de trámites y
alineación con los objetivos nacionales, para
garantizar el avance sostenible de estas iniciativas.
Una estrategia efectiva para optimizar los
procesos de permisos es la implementación de
una Ventanilla Única, que centraliza la gestión
a través de un único punto de contacto. Este
modelo, aplicado exitosamente en Dinamarca y
Costa Rica, mejora la transparencia y reduce los
tiempos de aprobación, permitiendo una mejor
coordinación entre las autoridades. Sin transferir
competencias legislativas, actúa como facilitador,
guiando a los desarrolladores en un marco
regulatorio claro y eciente (GWEC & IRENA,
2023).
referencia para su implementación, incluyendo
estándares globales como el documento de
2009 sobre gestión basada en ecosistemas y la
Guía Internacional de 2021 para la Planicación
Espacial Marina (GWEC & IRENA, 2023).
Para Uruguay, se recomienda incluir consultas
públicas desde las etapas iniciales de planicación
para garantizar transparencia y consenso,
especialmente con sectores como el pesquero.
También se sugiere evaluar impactos acumulativos
y desarrollar medidas especícas para mitigar
efectos temporales como ruido, vibraciones
y alteraciones en la calidad del agua y el aire,
promoviendo un desarrollo marítimo equilibrado y
sostenible.
41
4.3. Promoción de Investigaciones y Estudios:
4.4. Formación y Capacitación:
Es crucial desarrollar líneas de base ambientales
detalladas para evaluar los impactos en la ZEE de
Uruguay. Se recomienda exigir estudios de línea
de base a los desarrolladores y construir bases de
Uruguay debe priorizar programas de formación
en tecnologías de energía eólica oshore e
hidrógeno verde para los equipos e instituciones
que estarán evaluando estos proyectos,
fortaleciendo competencias digitales y técnicas en
la fuerza laboral. Soluciones tecnológicas como
las desarrolladas por WindEurope y Amazon Web
datos digitales consultables para mejorar la toma
de decisiones y la planicación futura.
Services pueden optimizar la gestión de permisos,
mejorando la eciencia y transparencia en los
procesos regulatorios (GWEC & IRENA, 2023).
42
7. REFERENCIAS
ANCAP. (2014). Programa oceanográco de caracterización del margen continental uruguayo. Zona Económica
Exclusiva. Montevideo: Zona Editorial.
ANCAP. (2016). Campaña Oceanográca para la Elaboración de un Estudio de Base Ambiental Regional de la
ZEE de Uruguay. Montevideo: Advisian.
Bastien, T., Juan, B., Andrew, W., Gérard, T., Morgane, L., Nicolas, D., & Antoine, C. (2018). A review of potential
impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations, and future
directions. Renewable and Sustainable Energy Reviews, Elsevier Ltd.
Bureau of Ocean Energy Management. (BOEM). (2018). Geological and Geophysical (G&G) Surveys. U.S.
Department of the Interior.
BVG Associates. (2019). Guide to an oshore wind farm. BVG Associates Limited.
Byrnes, T., & Dunn, R. (2020). Boating- and Shipping-Related Environmental Impacts and Ex-ample Management
Measures: A Review. Journal of Marine Science and Engineering. https://doi.org/10.3390/jmse8110908
Congressional Research Service. (2024). Potential Impacts of Oshore Wind on the Marine Ecosystem and
Associated Species: Background and Issues for Congress. https://crsreports.congress.gov
Chris LaFleur, E. H. (2023). Chapter 16 - Safety of hydrogen for large-scale energy deployment in a decarbonized
economy. En Academic Press. https://doi.org/10.1016/B978-0-323-99514-6.00011-X
Condon, S. K. (2023). Environmental aspects of oshore H2 production from oshore wind farms. Trondheim:
Department of Energy and Process Engineering at the Norwegian University of Science.
European Industrial Gases Association. (2018). Environmental impacts of hydrogen plants. Bruselas: EIGA.
Exo, K.-M., Huppop, O., & Garthe, S. (2003). Birds and oshore wind farms: a hot topic in marine ecology. Wader
Study Group Bull, Germany.
Global Wind Energy Council [GWEC]. (2022). Global oshore wind report 2022. Global Wind Energy Council.
Obtenido de: https://gwec.net/wp- content/uploads/2022/06/GWEC-Global-Oshore-Wind-Report-2022.pdf
Global Wind Energy Council [GWEC] & International Renewable Energy Agency [IRENA]. (2023). Enabling
frameworks for oshore wind scale up: Innovations in permitting. IRENA. Obtenido de: https://www.irena.org/- /
media/Files/IRENA/Agency/Publication/2023/Sep/IRENA_GWEC_Enabling_frameworks_oshore_wind_2023.
pdf
Goldman Sachs International. (2022). Carbonomics. The clean hydrogen revolution. New York: The Goldman
Sachs Group, Inc.
Gurudeo Anand Tularama, M. I. (2007). Environmental concerns of desalinating seawater using reverse osmosis.
Australia: The Royal Society of Chemistry.
Ibon, G., Iratxe, M., Joxe Mikel, G., & al. (2022). Reviewing the ecological impacts of oshore wind farms. npj:
Ocean Sustainability.
43
Köller, J. (2006). Oshore Wind Energy. Research on Environmental Impacts. Berlin: Institute of Landscape
Architecture and Environmental Planning, Department for Landscape Planning, and Environmental Impact
Assessment, Berlin University of Technology.
Letcher, T. M. (2017). Wind Energy Engineering. A Handbook for Onshore and Oshore Wind Turbines. Londres:
Academic Press.
Missimera, T. M., & Gilron, R. (2017). Environmental issues in seawater reverse osmosis desali-nation: Intakes and
outfalls. Elsevier B.V. https://doi.org/10.1016/j.desal.2017.07.012
Oisín, D., Rogério, C., & Coca, I. (2023). Impact of geophysical and geotechnical site investigation surveys on sh
and shellsh. Wind Energy Ireland (WEI): Blue Wise Marine.
Renewable Energy Wildlife Institute. (2024). Guide to wind energy & wildlife. Chapter 4: Minimizing collision risk
to wildlife during operations. Obtenido de https://rewi.org/guide/chapters/04-minimizing-collision-risk-to-wildlife-
during-operations/minimization-deterrence/
Rodríguez, O. (2020). Caracterización y estudio de parques eólicos oshore. Universidad Politécnica de Catalunya.
Soliman, M. N., & Zribi, F. (2021). Energy consumption and environmental impact assessment of desalination
plants and brine disposal strategies. Institution of Chemical Engineers, Elsevier B.V.
Stocker, M. (2023). Potential biological impacts of very low frequency acoustical energy pro-duced by oshore wind
turbine energy generation. The Journal of the Acoustical Society of America. https://doi.org/10.1121/10.0018602
T. Aran Mooney, M. H. (2020). Acoustic impacts of oshore wind energy on shery resources. Oceanography: The
Ocial Magazine of. https://doi.org/10.5670/oceanog.2020.408
TGS New Energy. (2024). TGS New Energy. Obtenido de 4C Oshore: https://www.4coshore.com/
Thomsen, K. (2012). Oshore wind: A comprehensive guide to successful oshore wind farm installation. Tranbjerg:
Academic Press.
UK Government (2020). Oshore wind sector deal. Department for Business, Energy & Indus-trial Strategy.
Obtenido de: https://www.gov.uk/government/publications/oshore-wind-sector-deal/oshore-wind-sector-deal
Van Hoey, G. B. (2018). Overview of the eects of oshore wind farms on sheries and aquaculture. Luxemburgo:
Publications Oce of the European Union.
Zaror, C. (2000). Introducción a la Ingeniería Ambiental para la Industria de Procesos. Concepción: Universidad
de Concepción.
Zhou, Z. L. (2019). Eects of diesel oil spill on macrobenthic assemblages at the intertidal zone: A mesocosm
experiment in situ. Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2019.104823
45
Garantias nanceiras: evoluções
regulatórias para assegurar o efetivo
descomissionamento das instalações
de produção de petróleo e gás natural
no Brasil
1.- Instituto de Energia e Ambiente, Universidade de São Paulo, SP, Brasil mmeneses@usp.br
2.- Instituto de Energia e Ambiente, Universidade de São Paulo, SP, Brasil vparente@iee.usp.br
Marcelo Vítor Martins de Meneses
1
, Virginia Parente
2
Recibido: 25/10/2024 y Aceptado: 04/2/2025
46
47
Diante do cenário de incertezas quanto ao futuro da indústria do petróleo e da possibilidade de
responsabilização internacional em caso de poluição oceânica, países produtores de petróleo,
dentre ele o Brasil, têm promovido a atualização dos seus normativos sobre descomissionamento de
plataformas oshore. Assim, por meio de revisão dos principais normativos internacionais e brasileiros
relacionados ao descomissionamento oshore, este artigo busca analisar o arcabouço regulatório
brasileiro sobre a temática. Adicionalmente, são discutidas as principais questões a serem abordadas
no processo de revisão da regulação de garantia nanceira para mitigar o risco de o contribuinte arcar
com o custo das operações de descomissionamento. Os resultados da análise indicaram haver falta
de transparência na disponibilização de informações à sociedade sobre as atividades de exploração e
produção de petróleo. Além disso, constatou-se a necessidade de aumentar a participação do sistema
nanceiro no provimento de garantias para o descomissionamento. Por m, vericou-se a necessidade
de o órgão regulador estabelecer parâmetros claros para a denição de estimativas de custo do
descomissionamento. As melhorias propostas neste artigo pretendem contribuir para que países como
o Brasil avancem em direção a uma transição energética justa, na qual os custos da transição sejam
adequadamente suportados pelos seus respectivos responsáveis.
In the face of uncertainty regarding the future of the oil industry and the possibility of international
liability in the event of ocean pollution, oil-producing countries, including Brazil, have been updating their
regulations on the decommissioning of oshore platforms. Thus, by reviewing the main international
and Brazilian regulations related to oshore decommissioning, this article seeks to analyze the Brazilian
regulatory framework on the subject. Additionally, the main issues to be addressed in the process of
reviewing the nancial guarantee regulation to mitigate the risk of the taxpayer bearing the cost of
decommissioning operations are discussed. The results of the analysis indicated a lack of transparency
in the provision of information to society about oil exploration and production activities. In addition, it
was found that there is a need to increase the participation of the nancial system in the provision of
guarantees for decommissioning. Finally, it was found that the regulatory body needs to establish clear
parameters for dening decommissioning cost estimates. The improvements proposed in this article
aim to help countries like Brazil move towards a fair energy transition in which the transition costs are
adequately borne by those responsible for them.
Palavras-chave: descomissionamento de plataformas, garantias nanceiras, indústria de petróleo e
gás natural, transição energética, regulação.
KEYWORDS: platform decommissioning, nancial guarantees, oil and natural gas industry, energy
transition, regulation.
Resumo
Abstract
48
1. INTRODUÇÃO
De acordo com relatórios setoriais publicados no
início da década de 2020, o mundo possui mais de
7.500 instalações oshore destinadas à produção
de petróleo e gás natural, distribuídas entre mais
de 50 países (Loia et al., 2022). Grande parte
dessas estruturas, entretanto, estão alcançando
a fase nal de seu ciclo de vida, sendo estimado
que aproximadamente 3.000 plataformas serão
descomissionadas entre os anos de 2021 e 2030,
ao custo total de 100 bilhões de dólares (Lockman
et al., 2023). Estima-se que o Brasil se tornará
um dos principais países em termos de volume
de investimento em descomissionamento, com
um total de investimentos pós-2025 que deve
exceder 180 bilhões de reais. Essas estimativas
superam as previsões de investimentos para
o Reino Unido (119 bilhões de reais) e para os
Estados Unidos, de 55,25 bilhões de reais, para o
mesmo período (FGV Energia, 2021).
Não obstante a fase descomissionamento ainda
não ter sido experimentada por muitos países
produtores de petróleo, uma vez que tais atividades
são normalmente executadas em campos
maduros, não se pode dizer que essa é uma etapa
totalmente desconhecida pela indústria. Como
todo recurso mineral esgotável, ainda durante a
elaboração dos planos de desenvolvimento, é
possível estimar quando os custos de produção
tornarão maiores que a receita advinda da
produção e, consequentemente, quando um
projeto será descomissionado (Kaiser, 2019). Em
razão disso, as plataformas oshore de petróleo
são projetadas para ter uma vida útil equivalente
ao período de produção esperado do campo
onde serão instaladas (FGV Energia, 2022).
Ocorre que, em adição aos fatores
técnicos que inevitavelmente conduzem ao
descomissionamento, a crescente exigência de
descarbonização da economia poderá acarretar
o encerramento das atividades de produção de
petróleo muito antes do planejado (Lockman
et al., 2023). Ambientalistas e pesquisadores
têm armado que, para alcançar as metas
estabelecidas pelo Acordo de Paris e limitar o
aumento da temperatura global a 1,5°C acima
dos níveis pré-industriais, é necessário impor
restrições à produção de combustíveis fósseis.
Assim, sugerem que os países produtores de
petróleo sejam obrigados a renunciar à exploração
de até 60% de suas reservas (Welsby et al., 2021).
Outras medidas mais concretas, entretanto,
estão sendo adotadas por países industrializados,
a exemplo da proibição da venda de carros com
motor de combustão interna, o que permite
projetar uma redução drástica na demanda futura
de combustíveis fósseis (Panetta, 2022).
Nesse cenário de incertezas quanto ao futuro da
indústria do petróleo, portanto, a preocupação
quanto à capacidade das petrolíferas honrarem
com seus compromissos de m de vida
contratual passou a ser um tema recorrente nas
agendas governamentais. Tal apreensão decorre,
principalmente, do fato de grande parte dos
países produtores de petróleo serem signatários
de tratados internacionais que os obrigam a não
causar poluição oceânica. Assim, nos termos
desses tratados, caso as companhias petrolíferas
não detenham recursos nanceiros para
desativar as instalações de produção, os países
que as autorizaram poderão ser condenados a
assumir os elevados custos das atividades de
descomissionamento (Paterson, 2010).
Para mitigar esse risco nanceiro, então,
países produtores passaram a buscar medidas
mais efetivas para evitar que o custo do
descomissionamento venha a ser suportado
por seus cidadãos pagadores de impostos,
um problema conhecido no mundo econômico
como externalidades (Dernbach, 1998; Mackie
& Fogleman, 2016). Dentre as principais
medidas para garantir a internalização dessas
externalidades referentes às atividades de
descomissionamento, a exigência da contratação
de garantias nanceiras para assegurar o
descomissionamento das instalações de
produção tem se mostrado uma ferramenta com
potencial para evitar que danos socioeconômicos
e ambientais se materializem (Parente et al.,
2006). Essa foi exatamente a opção adotada pela
Brasil, que recentemente promoveu atualizações
49
em seu arcabouço regulatório, de modo a tornar
mais rígidas e claras as obrigações relacionadas
às atividades de descomissionamento a serem
executadas ao m do contrato (Braga & Pinto,
2022).
Tendo sido superada, então, a etapa inicial de
atualização normativa, a Agência Nacional do
Petróleo, Gás Natural e Biocombustíveis (ANP)
realizou em 2023 o primeiro ciclo completo de
cobrança de garantias nanceiras, o que torna
possível analisar o processo para identicar
oportunidades de aprimoramento dessa política
pública. Assim, com o objetivo de situar a
atualização da regulamentação brasileira dentro de
um esforço global de construção de mecanismos
para proteger os cidadãos de países produtores
de petróleo quanto ao risco nanceiro associado
às atividades de descomissionamento, este
artigo, por meio de uma revisão histórica, busca
apresentar os principais tratados internacionais
relacionados ao descomissionamento oshore.
Adicionalmente, analisando as informações
publicadas pela ANP sobre o descomissionamento,
serão feitos apontamentos iniciais sobre
oportunidades de evolução do atual arcabouço
regulatório, visando permitir que as garantias
nanceiras cumpram efetivamente sua função.
O diagnóstico alcançado indica que o órgão
regulador deve ampliar a transparência das
informações prestadas à sociedade sobre as
atividades de descomissionamento, além de
estabelecer parâmetros claros que permitam a
elaboração de estimativas conáveis do custo
dessas atividades. Além disso, foi constatada
a necessidade de aumentar a participação do
sistema nanceiro no provimento dos recursos que
garantam a execução do descomissionamento,
reduzindo as possibilidades de autogarantias.
Além desta breve introdução, o presente artigo
contempla mais cinco seções. Na seção dois são
apresentados os principais tratados e convenções
internacionais relacionados à temática do
descomissionamento oshore. A seção três é
dedicada a analisar a inuência das normativas
internacionais sobre a construção do arcabouço
legal e regulatório brasileiro. Por sua vez, na
seção quatro é realizada uma breve análise do
primeiro ciclo de apresentação de garantias, que
se iniciou em 2023. Em seguida, na seção cinco,
são debatidos os principais aspectos que devem
ser considerados para aumentar a efetividade
da política pública em análise. Finalmente, as
considerações nais apresentam os principais
pontos discutidos neste artigo, com destaque
para a indicação dos caminhos que a regulação
brasileira deverá seguir para assegurar uma
transição energética justa no país.
50
2. EVOLUÇÃO DOS TRATADOS E CONVENÇÕES
INTERNACIONAIS DE DESCOMISSIONAMENTO
Buscando proteger o meio ambiente, as rotas
oceânicas para navegação, as atividades
comerciais como a pesca e os outros usos das
águas marítimas, os tratados e convenções
internacionais que governam importantes
aspectos da indústria oshore de petróleo
evoluíram consideravelmente no último século
(Fam et al., 2018). Dentre os tratados internacionais
elaborados nos últimos 60 anos relacionados
à temática do descomissionamento oshore,
três normativos merecem uma apreciação mais
detalhada: a Convenção sobre a Plataforma
Continental, a Convenção das Nações Unidas
sobre o Direito do Mar e as Diretrizes emitidas
pela Organização Marítima Internacional (Martin,
2003).
2.1. A Convenção sobre a Plataforma Continental - Convenção de Genebra (1958)
A Convenção sobre a Plataforma Continental,
também conhecida como Convenção de Genebra,
foi o primeiro tratado internacional relacionado
ao abandonamento ou desuso de instalações
marítimas. Essa convenção estabeleceu a noção e
os limites da plataforma continental e os direitos e
deveres do Estado costeiro relativos à exploração
de recursos naturais em uma área além do mar
territorial (Anderson et al., 2020).
Os principais objetivos deste normativo foram
a proteção das rotas marítimas essenciais à
navegação internacional e à atividade pesqueira,
bem como a conservação dos recursos vivos do
mar e a defesa da investigação cientíca. Nesse
sentido, a convenção determinava que o Estado
costeiro deveria manter a segurança em torno das
instalações da plataforma continental necessárias
para explorar os recursos naturais com o objetivo
de proteger as rotas marítimas. Adicionalmente,
qualquer instalação abandonada ou fora de uso
localizada na plataforma continental deveria
ser totalmente removida (International Law
Commission, 1958).
Cabe mencionar, entretanto, que as atividades
de produção de petróleo oshore ainda eram
muito incipientes quando da elaboração deste
normativo, sendo connadas quase que
exclusivamente a águas rasas (Hammerson &
Antonas, 2016). Nesse sentido, a total remoção
das instalações abandonadas ou fora de uso
era uma determinação plausível de ser seguida.
Entretanto, com a instalação de plataformas
em águas profundas, tornou-se claro que o
cumprimento do dispositivo poderia não mais
ser factível. Por esse motivo, os países mais
avançados na tecnologia de produção em águas
profundas passaram a propor uma interpretação
alternativa para a convenção, na qual apenas
as instalações que pudessem causar alguma
interferência injusticável na navegação, pesca
ou conservação dos recursos vivos deveriam ser
removidas (Paterson, 2010).
51
2.2. A Convenção das Nações Unidas sobre o Direito do Mar (1982)
2.3. As Diretrizes e Normas da Organização Marítima Internacional (OMI) para a Remoção de
Instalações e Estruturas Oshore na Plataforma Continental e na Zona Econômica Exclusiva
Considerando que a indústria do petróleo evoluiu
desde a Convenção de Genebra, os países
produtores de petróleo membros da Organização
das Nações Unidas (ONU) procuraram estabelecer
um normativo menos rígido em relação ao
descomissionamento. Desse esforço, emergiu a
Convenção das Nações Unidas sobre o Direito do
Mar de 1982, que estabeleceu uma nova ordem
jurídica para os mares e oceanos, tendo como
principais objetivos promover a comunicação
internacional, manter o uso pacíco do oceano,
o uso eciente e a conservação dos recursos
naturais, bem como a proteção do ambiente
marinho (United Nations General Assembly, 1982).
No que diz respeito ao descomissionamento,
essa convenção era nitidamente mais permissiva
do que a Convenção de Genebra, uma vez que
permitia a remoção apenas parcial de instalações
oshore fora de uso. Nos termos dessa nova
convenção, qualquer instalação ou estrutura
fora de uso deveria ser removida. Contudo, no
caso de instalações ou estruturas não totalmente
removidas, a sua posição, profundidade
Diferentemente das convenções apresentadas
anteriormente, as diretrizes da Organização
Marítima Internacional não são vinculativas, sendo
apenas um guia que apresenta recomendações
aos países membros da OMI sobre um assunto
especíco relacionado ao transporte marítimo
(Braga & Pinto, 2022). Entretanto, para aqueles
países que promulgaram a Convenção das
Nações Unidas sobre o Direito do Mar de
1982, visto que tal regulamento menciona que
devem ser observadas as normas publicadas
por uma organização internacional competente,
as diretrizes da OMI tornaram-se de natureza
vinculativa (Fam et al., 2018).
Assim, as diretrizes produzidas por esta
organização, e aprovadas na Assembleia da
OMI em 1989, estabeleceram que as instalações
e dimensões deveriam ser devidamente
publicadas (Martin, 2003). Assim, embora não
seja explicitamente armado que as instalações
oshore pudessem ser parcialmente removidas,
o documento aprovado abre espaço para esta
interpretação (Fam et al., 2018).
Outra importante mudança inserida no texto
dessa convenção é a indicação de que a
remoção de instalações e estruturas oshore
abandonadas deveria ser conduzida de acordo
com padrões internacionais de aceitação geral
relativos ao desmantelamento publicados por
uma organização internacional competente.
Assim, mais uma vez por meio de um esforço
de interpretação textual, à Organização Marítima
Internacional (OMI) foi concedida a autoridade
de desenvolver novos padrões e diretrizes de
descomissionamento em harmonia com o estágio
de desenvolvimento da indústria oshore de
petróleo (Anderson et al., 2020).
ou estruturas abandonadas ou fora de uso
localizadas na plataforma continental ou na zona
econômica exclusiva deveriam ser removidas, a
menos que a sua não remoção ou remoção parcial
fosse coerente com os padrões estipulados pelas
diretrizes da OMI. Essas diretrizes, por sua vez,
estabelecem que a decisão de permitir que uma
instalação, estrutura ou partes dela permaneçam
no fundo do mar deve basear-se numa avaliação
caso a caso pelo Estado costeiro com jurisdição
sobre a instalação ou estrutura. Dentre os
assuntos que devem ser considerados na
análise de cada caso, destacam-se “os custos,
a viabilidade técnica e os riscos de lesões ao
pessoal associados à remoção da instalação ou
estrutura” (International Maritime Organization,
1989, p. 2).
52
3. A RECEPÇÃO DAS CONVENÇÕES INTERNACIONAIS PELO
ORDENAMENTO JURÍDICO E REGULATÓRIO BRASILEIRO
A Convenção das Nações Unidas sobre o
Direito do Mar, celebrada em 1982, recebeu a
assinatura de 159 Estados-membros, dentre eles
o Brasil. Entretanto, antes de ser recebida pelo
ordenamento jurídico brasileiro, foi necessário a
adequação do direito interno ao tratado, o que
ocorreu apenas com a Lei 8.617, de 4 de janeiro
de 1993, que estabeleceu o regramento brasileiro
sobre o mar territorial e a zona econômica
exclusiva. Finalmente, por meio do Decreto 1.530,
de 22 de junho de 1995, foi declarada a entrada
em vigor da Convenção no Brasil, a partir de 16
de novembro de 1994 (Fiorati, 1997).
Assim, a partir dessa data, perante o direito
internacional, o Brasil passou a ser passível de
responsabilização no caso de descumprimento
das normas referentes ao abandonamento ou
desuso de instalações marítimas, incluindo as
de produção de petróleo. Por esse motivo,
desde os primeiros contratos de exploração e
produção rmados entre a Agência Nacional do
Petróleo, Gás Natural e Biocombustíveis (ANP) e
as empresas petrolíferas, existe a determinação
explícita de que as empresas contratadas são
obrigadas a executar as atividades de desativação
e abandono.
Por evolução regulatória, esse conjunto
de atividades passou a ser denominado
descomissionamento, e consiste nas atividades
associadas à interrupção denitiva da operação
das instalações, ao abandono permanente e
arrasamento dos poços, além da correta destinação
dos materiais retirados. Adicionalmente, é na fase
de descomissionamento que devem ser realizadas
as ações necessárias para a recuperação
ambiental da área de produção, bem como
tomadas as medidas para a garantir as condições
de segurança para a navegação marítima (Braga
& Pinto, 2022).
Entretanto, as atividades de descomissionamento
são normalmente realizadas ao nal do contrato,
isto é, após o m da vida útil produtiva de um campo.
Assim, caso determinada petrolífera não tenha
reservado os recursos nanceiros necessários
para executar as complexas e dispendiosas
atividades de descomissionamento, e venha a se
tornar insolvente, o governo do Brasil (e em última
instância, o pagador de impostos) pode ser obrigado
a custear as ações de descomissionamento em
decorrência da Convenção das Nações Unidas
sobre o Direito do Mar.
Desta forma, para mitigar tal risco nanceiro,
os contratos de exploração e de produção de
petróleo utilizados no Brasil também estabelecem
obrigações quanto à contratação de garantias de
descomissionamento por parte das petrolíferas.
Ocorre que, pela ausência de previsão para o
início dos projetos de descomissionamento, a
regulação do tema foi, de certa forma, postergada
pela ANP. Contudo, a ausência uma resolução
especíca que estabelecesse normas claras
sobre as formas de apresentação das garantias
de descomissionamento criava um ambiente
de insegurança jurídica e de incertezas para os
contratos de concessão (Agência Nacional do
Petróleo, Gás Natural e Biocombustíveis [ANP],
2019).
O status quo, contudo, começou a ser alterado
no início da década de 2010, em decorrência
da proximidade do m dos contratos assinados
em 1995 entre a ANP e a Petróleo Brasileiro
S.A. (Petrobras). Entretanto, a discussão sobre
descomissionamento no Brasil, de fato, ganhou
consistência a partir da divulgação do plano de
desinvestimento da Petrobras em 2015, que previa
a cessão de campos de produção “maduros”,
isto é, campos que ultrapassaram seu pico
de produção. Em decorrência desse processo
de cessão, os fatores de risco associados à
indústria petrolífera no país sofreriam alterações,
visto que entre as principais interessadas nos
ativos disponibilizados pela Petrobras estavam
pequenas e médias empresas, muitas dessas
sem experiência prévia no setor do petróleo
(Chambriard, 2021).
53
4. A APLICAÇÃO DO NOVO ARCABOUÇO REGULATÓRIO -
PRIMEIROS CICLOS
Assim, após várias rodadas de discussão
sobre o tema das garantias nanceiras
para descomissionamento com órgãos de
representação das empresas petrolíferas, de
instituições nanceiras e de outras entidades
com interesse no assunto, em 27 de setembro
de 2021, foi publicada a Resolução ANP
854/21. Tal resolução tomou como referência as
mais modernas normativas internacionais sobre
o assunto, estabelecendo os procedimentos
Em abril de 2023, a ANP publicou em seu
sítio eletrônico o primeiro “Painel Dinâmico de
Garantias Financeiras de Descomissionamento”,
no qual constavam todos os campos de petróleo
ou gás natural em fase de desenvolvimento ou
de produção no Brasil. Conforme disponível
no referido painel, em 2023, um total de 396
campos estavam obrigados a apresentar garantia
nanceira em alguma das modalidades permitidas
pela Resolução ANP 854/21, quais sejam: carta
de crédito, seguro garantia, garantia corporativa,
penhor de petróleo e gás natural, fundo de
provisionamento ou um termo com atributo de
título executivo extrajudicial por meio do qual a
própria empresa assegura os recursos nanceiros
para o descomissionamento (ANP, 2023).
O valor total das garantias a serem apresentadas
em 2023 foi de R$ 82,7 bilhões, o que representa
37% do custo total do descomissionamento
brasileiro, que era estimado em 2023 no montante
de R$ 224 bilhões. Em relação às obrigações de
apresentação de garantia, os valores variavam
de ínmos R$ 50,20 (campo Piranema Sul, em
devolução na bacia Sergipe) até substanciais R$
8,8 bilhões (campo Albacora, em produção na
relacionados às garantias de descomissionamento
no Brasil. Entretanto, para permitir que todas
as instituições nanceiras e o próprio setor do
petróleo se adaptassem às inovações trazidas
pela nova regulação, a Resolução ANP nº 854/21
passou a ter plena efetividade apenas em 02 de
outubro de 2023
1
, passando a ser aplicável a
todos os contratos de exploração e produção de
petróleo e gás natural.
1.- De acordo com a Resolução ANP 854/21, em sua primeira versão, as contratadas deveriam apresentar à ANP, até 30 de junho de
2023, garantias nanceiras de descomissionamento conforme o valor publicado no sítio eletrônico da ANP. Contudo, com a publicação da
Resolução ANP 925/2023, a data limite foi postergada para 02 de outubro de 2023.
2.- Material divulgado no “Workshop de Apresentação de Garantias da ANP”, em 2023, indicou um custo total de descomissionamento no
Brasil na ordem de R$ 224 bilhões naquele ano. Esse valor foi atualizado pela ANP em 2024 para R$ 288 bilhões. Esses valores são próximos
de estudos realizados por consultoria privadas, como a Aurum Tank, que estimou, em 2024, investimentos em descomissionamento no Brasil
da ordem de R$ 306 bilhões nos próximos 30 anos (https://aurumenergia.com.br/desmontagem-de-plataformas-pode-movimentar-r-306-bi/).
bacia Campos). Por sua vez, no que se refere à
localização, a bacia de Campos foi aquela com o
maior valor a ser garantido em 2023, no montante
de R$ 46,8 bilhões
2
, o que representa cerca de
60% do total de garantias do ano, conforme
ilustrado na Figura 1.
54
A representatividade da bacia do Campos no
custo do descomissionamento brasileiro não
chega a surpreender. Tal bacia teve produção
iniciada em 1977, abrigando os primeiros grandes
campos e poços produtores do oshore brasileiro,
sendo ainda hoje a bacia com o maior número
de campos em produção entre todas as bacias
brasileiras. Contudo, a área tem apresentado
uma queda progressiva de produção na última
década, sendo que muitos dos campos dessa
bacia estão sendo desmobilizados ou devolvidos.
Assim, devido a proximidade do m de contrato
para muito desses campos, a ANP exige um
valor proporcionalmente alto em garantia de
descomissionamento para esses campos.
Por seu turno, em relação à responsabilidade
de apresentar tais garantias, a Resolução
ANP 854/21 determina que é obrigação da
operadora do contrato apresentá-las, ainda que
seja facultada às consorciadas apresentarem
garantias individualmente. Por esse motivo,
o Painel Dinâmico de Garantias Financeiras
de Descomissionamento relaciona o valor a
ser oferecido em garantias para determinado
campo com a operadora do referido contrato de
exploração e produção. Conforme a informação
disponibilizada no painel, a Petrobras foi a
operadora com o maior valor a ser apresentado,
R$ 64,4 bilhões (cerca de 80% do valor total
em 2023). Além dela, outras quatro operadoras
apresentam valores igual ou superiores a um bilhão
de reais: Shell, R$ 6,2 bilhões; Carmo Energy, R$
2,7 bilhões; Equinor, R$ 1,6 bilhões; e Trident
Energy, R$ 1,0 bilhão. Juntas as cinco empresas
representaram 92% do valor a ser garantido em
2023, conforme apresentado na Figura 2.
Figura 1 Valor das garantias nanceiras de 2023 por bacia, em percentual
Figura 2 Valor das garantias nanceiras de 2023 por operador, em percentual
Fonte: Elaboração própria a partir de dados publicados no Painel Dinâmico de Garantias
Financeiras de Descomissionamento - ANP (2023).
Fonte: Elaboração própria a partir de dados publicados no Painel Dinâmico de Garantias
Financeiras de Descomissionamento - ANP (2023).
55
Até o momento, ainda não foi publicado pela ANP
nenhum relatório ocial que detalhe os valores
recebidos pelas diferentes modalidades de
garantia previstas na resolução. Contudo, Barbosa
et al. (2024) apresentam a primeira análise dos
resultados da regulação brasileira de garantias de
descomissionamento. Conforme o diagnóstico
elaborado pelos autores, em 2023, a modalidade
termo que assegure o descomissionamento
pela própria contratada correspondeu a 67,9%
do montante recebido, tendo sido utilizada por
duas empresas. A segunda modalidade com
maior representação foi a garantia corporativa,
correspondendo a 15,8% do valor recebido,
tendo sido a modalidade escolhida por quatro
empresas. Outra modalidade amplamente
Tendo em vista que a Resolução ANP 854/21
determina que o valor das garantias nanceiras
deve ser atualizado anualmente, em abril de 2024,
a ANP publicou o segundo Painel Dinâmico de
Garantias Financeiras de Descomissionamento
(ANP, 2024). Nesse segundo ano de regulação,
houve um acréscimo do valor a ser assegurado,
que passou a ser de R$ 92,6 bilhões, uma elevação
de 12% em relação ao ano anterior. Por sua vez,
esse valor passou a corresponder a apenas 32%
do custo total do descomissionamento brasileiro,
estimado em R$ 288 bilhões em 2024. A bacia
de Campos permaneceu correspondendo a
cerca de 60% do valor a ser garantido, bem
Figura 3 Distribuição das garantias de descomissionamento recebidas em 2023 por
modalidade, em percentual
Fonte: Barbosa et al. (2024).
utilizada foi o seguro garantia, que foi a opção de
28 petrolíferas. As apólices de seguro garantia
foram emitidas por nove seguradoras diferentes,
totalizando 8,8% do valor assegurado. Também
popular, as cartas de crédito foram a escolha
de 23 empresas, que por meio de sete bancos
garantiram 2,6% do total do ano. Completam o
quadro, o penhor de petróleo e gás natural (4,9%)
e o fundo de provisionamento (inferior a 0,1%),
conforme demonstrado na Figura 3.
como a Petrobras se manteve como a operadora
responsável por apresentar cerca de 80% do
valor das garantias.
56
Tabela 1 – Comparativo entre os valores de garantias de descomissionamento dos anos
2023 e 2024
Fonte: elaboração própria a partir de dados publicados no Painel Dinâmico de Garantias
Financeiras de Descomissionamento - ANP (2023) e ANP (2024).
Válido mencionar, contudo, que dos 401 campos
listados no Painel Dinâmico de Garantias
Financeiras de Descomissionamento de 2024,
158 campos (39%) apresentam valores de
aporte de garantia de descomissionamento
inferiores em 2024 quando comparados com o
ano de 2023, totalizando uma redução de R$
9,2 bilhões. A constatação da redução do valor a
ser garantido em 2024 para alguns campos, em
um primeiro momento, levanta questionamentos
quanto à adequação da metodologia de cálculo
do valor a ser garantido anualmente denido na
Resolução ANP 854/21. O método, chamado
Modelo de Aporte Progressivo (MAP), prevê
Conforme mencionado nas seções anteriores,
grande parte dos países produtores de petróleo
são signatários de tratados e convenções
internacionais que os obrigam a não causar
poluição oceânica. Sendo assim, tais países
são passíveis de responsabilização no caso
do descumprimento dessa obrigação (Braga &
Pinto, 2022). Nesse contexto, diversos países, a
exemplo dos Estados Unidos e do Reino Unido,
o aumento gradual do valor garantido a cada
ano, visando alcançar 100% do custo total do
descomissionamento ao nal do contrato de
exploração. Entretanto, no caso de elevações
no valor das reservas provadas e prováveis (2P),
de extensões de prazo do contrato, ou mesmo
de reduções do custo estimado das atividades
de descomissionamento, o valor a ser garantido
pode diminuir, ao invés de aumentar, de um ano
para o outro.
5. DISCUSSÃO SOBRE APRIMORAMENTOS DO ARCABOUÇO
REGULATÓRIO BRASILEIRO VIGENTE EM 2024
estabeleceram normas nacionais para mitigar
o risco de as empresas falharem em cumprir
com suas obrigações de m de vida contratual,
deixando para os governos locais (e em última
instância seus cidadãos) a conta das atividades de
descomissionamento (Department for Business,
Energy & Industrial Strategy, 2018; Bureau of
Ocean Energy Management, 2024).
57
Fica claro, portanto, que o cidadão é o
destinatário nal das políticas de garantias de
descomissionamento. Entretanto, no caso
brasileiro, embora a ANP tenha publicado a
Resolução ANP 854/21 e dado um passo a mais
ao disponibilizar no Painel Dinâmico de Garantias
de Descomissionamento informações básicas
sobre as garantias, percebe-se que informações
importantes não estão sendo compartilhadas
com a sociedade. Dentre tais informações, cabe
destacar o custo total de descomissionamento
de cada campo, o que corresponde exatamente
ao risco nanceiro suportado pela população
em cada projeto no caso do inadimplemento
do operador em relação às suas obrigações
contratuais. Portanto, aumentando a transparência
em relação aos dados do setor de petróleo, a
ANP possibilitará que os cidadãos participem
ativamente dos fóruns de discussão sobre a
política de descomissionamento, evitando que
essas arenas de debate sejam monopolizadas
pelas empresas petrolíferas e suas entidades
representativas.
Ainda no campo da transparência, cou
constatado que o Painel Dinâmico de Garantias
de Descomissionamento apresenta a informação
das obrigações de garantia conectada apenas
aos operadores dos contratos. Contudo,
considerando que a própria Resolução ANP
854/21 determina que em caso de consórcios
todas as contratadas serão solidariamente
responsáveis pela solvabilidade das garantias
nanceiras, é fundamental que a sociedade tenha
acesso ao montante de garantias nanceiras a
ser ofertado por cada consorciada, não apenas
pelo operador. Essa informação poderia ser útil,
por exemplo, para fomentar estudos acadêmicos
sobre a denição do risco nanceiro máximo
tolerável para cada perl de petrolífera, bem como
para a elaboração de indicadores de qualidade
nanceira que poderiam ser utilizados nos
processos de aquisição de campos maduros, ou
mesmo pelas instituições nanceiras na hora da
contratação das garantias.
Por sua vez, cabe reexão mais profunda sobre
a real efetividade da própria política de garantias
nanceira quando vericado que cerca de 90% do
valor recebido pela ANP corresponde a garantias
em que a própria indústria do petróleo assegura
os recursos nanceiros para o cumprimento das
obrigações de descomissionamento. Malone
e Winslow (2018), ao analisarem as recentes
falências no setor de mineração dos Estados
Unidos, vericam que as garantias fornecidas
pelas próprias empresas (autogarantias) não
funciona mais como um mecanismo ecaz de
garantia nanceira, devendo os governos exigirem
garantia nanceira mais rigorosas. No setor
petrolífero, como mencionado, vericamos os
mesmos riscos de falência de empresas, visto
que a crescente exigência de descarbonização
da economia ameaça o futuro da indústria do
petróleo, podendo limitar a capacidade de as
petrolíferas concretizarem os lucros planejados
para os atuais projetos de produção.
Assim, é altamente recomendado o
compartilhamento dos riscos inerentes à atividade
petrolífera com outros setores da economia,
principalmente o setor nanceiro. Nesse sentido,
Parente et al. (2006) defende que a constituição
de fundos de provisionamento dedicados, que
acompanhem o projeto oshore ao longo de
sua vida útil, seria a opção mais adequada para
diminuir os riscos da produção em campos de
economicidade marginal, permitindo que as
atividades de descomissionamento deixem de
ser encaradas apenas como o “m de vida” de
um ativo energético, mas também como uma
parte fundamental da economia circular e do
desenvolvimento sustentável.
No que se refere à redução do valor do aporte
de alguns campos em 2024 quando comparado
com o ano de 2023, percebe-se que o contratado
detém uma grande discricionariedade na denição
as atividades de descomissionamento que
efetivamente serão executadas ao m do contrato.
Tal discricionariedade permite que as petrolíferas
adotem metodologias diferentes de abandono,
o que inevitavelmente acarreta diferentes custos
a serem contabilizados (Barbosa et al., 2022).
Nesse sentido, cabe ao regulador aprimorar as
resoluções que determinam quais instalações
deverão ser removidas, bem como denir
claramente o método de descomissionamento a
ser empregado na elaboração das estimativas de
custo de descomissionamento.
58
Ainda no tocante aos custos, a falta de experiência
dos operadores na execução de atividades de
descomissionamento tem tornado as estimativas
de custos extremamente voláteis. Campos
operados por empresas de porte similar, em
profundidades de lâmina d’água equivalentes e
com produções semelhantes podem apresentar
estimativas de custos diferentes devido ao nível
de risco que cada empresa está disposta a
assumir, especialmente em relação aos riscos
de lesões ao pessoal designado para a remoção
das instalações ou estruturas. Além disso, ainda
uma carência de estudos para determinar se
as novas petrolíferas, que começaram a atuar na
indústria após o processo de desinvestimento da
Petrobras, realmente apresentam custos inferiores
de descomissionamento ou se, na verdade, tais
estimativas estão subdimensionadas.
Por m, pode-se armar que há baixos incentivos
para que as empresas apresentem os custos de
descomissionamento de forma acurada. Devido
à forma que o Modelo de Aporte Progressivo foi
estabelecido, quanto maior o custo estimado,
maior será o valor da garantia a ser apresentada
anualmente. Por consequência, maiores serão
os gastos das petrolíferas com a aquisição de
instrumentos de garantia nanceira. Portanto, em
um típico dilema do principal-agente, em condições
de informação assimétrica e incompleta, as
contratadas têm o incentivo de apresentar custos
estimados na extremidade inferior do espectro de
possibilidades, objetivando reduzir seus custos
operacionais (Mackie & Velenturf, 2021). Para
mitigar essa questão, a ANP deve robustecer seu
corpo técnico, permitindo a criação de bases de
conhecimento independentes da conabilidade
das informações prestadas pelo contratado.
Conforme visto, a crescente urgência da ação
climática em linha com o Acordo de Paris,
juntamente com a adoção de fontes de energia
renováveis e tecnologias energeticamente
ecientes podem afetar signicativamente o
futuro da indústria do petróleo. Nesse contexto,
devido a existência de tratados que restringem
a poluição oceânica, governos ao redor do
mundo têm sido compelidos a atualizar seus
regulamentos sobre o descomissionamento de
plataformas oshore para garantir que os custos
dessa atividade sejam internalizados pela indústria
petrolífera e, indiretamente, pelos consumidores
de combustíveis fósseis, não sendo socializados
com a população geral de forma indiscriminada.
Por sua vez, o governo do Brasil, país com
um dos maiores investimentos projetados em
descomissionamento para as próximas décadas,
não se eximiu de sua responsabilidade social,
e tornou mais rígidas e claras as obrigações
6. CONSIDERAÇÕES FINAIS
relacionadas às garantias do descomissionamento
por meio da publicação da Resolução ANP
854/21. Contudo, após completado o primeiro
ciclo de apresentação de garantias, foi possível
analisar os principais aspectos em que o arcabouço
regulatório brasileiro vigente poderia evoluir
para garantir que as petrolíferas assegurem os
recursos para descomissionar as infraestruturas
de produção de petróleo a contento.
Dentre as principais conclusões da análise,
destacou-se a necessidade de a ANP aperfeiçoar
a transparência das informações prestadas
à sociedade sobre as atividades da indústria
do petróleo atuante no país. A divulgação de
informações, tais como o valor estimado do
descomissionamento e a participação de cada
petrolífera nos contratos de produção, permitirá
que os cidadãos, como parte interessada
nas políticas públicas do setor, tenham o
conhecimento necessário que os habilite a
59
participar, como stakeholders, dos fóruns de
discussão sobre as evoluções nas regulações
sobre descomissionamento.
Vericou-se, também, a necessidade de aumentar
o envolvimento do setor nanceiro no provimento
de recursos para assegurar o suporte econômico
das atividades de descomissionamento, como
forma de reduzir o risco de as petrolíferas falharem
em cumprir com suas obrigações contratuais em
um cenário de rápida substituição da produção
petrolífera por fontes renováveis de energia. Além
disso, foi constatado ser imprescindível reduzir a
discricionariedade dos contratados em relação à
denição do custo do descomissionamento, por
meio do estabelecimento de uma metodologia
padrão e do enriquecimento das bases de dados
da ANP.
Em síntese, os formuladores de políticas públicas
no setor de petróleo e gás natural devem ser
estimulados a ajustar os regulamentos vigentes para
responder ao complexo cenário dos combustíveis
fósseis, antecipando-se para proteger os
cidadãos dos custos do descomissionamento
das infraestruturas de produção oshore.
Nesse sentido, a implementação das melhorias
regulatórias propostas neste artigo contribuirá
para que países como o Brasil avancem em
direção a uma transição energética mais justa, na
qual os custos da transição sejam adequadamente
suportados pelos seus respectivos responsáveis.
60
7. REFERÊNCIAS
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. (2019). Nota Técnica nº 64/2019/SDP. Processo
Administrativo nº 48610.215088/2019-29.
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. (2023). Valor a ser garantido em 2023. https://www.
gov.br/anp/pt- br/assuntos/exploracao-e-producao-de-oleo-e-gas/desenvolvimento-e- producao/garantias-
nanceiras-de-descomissionamento
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. (2024). Valor a ser garantido em 2024. https://www.
gov.br/anp/pt- br/assuntos/exploracao-e-producao-de-oleo-e-gas/desenvolvimento-e- producao/garantias-
nanceiras-de-descomissionamento
Anderson, O. L., Weaver, J. L., Dzienkowski, J. S., Lowe, J. S., Hall, K. B., Sourgens, F. G., Sullivan, H. W., &
Foundation, R. M. M. L. (2020). International Petroleum Law and Transactions. Rocky Mountain Mineral Law
Foundation. https://books.google.com.br/books?id=dLw7zgEACAAJ
Barbosa, L. C. M., Michalowski, G. R., ANA, J. F. S., Souza, K. A. de, Santos, M. F. O., & Vidal, P. da C. J. (2022).
A importância das informações para o planejamento do descomissionamento de instalações de exploração e de
produção de petróleo e gás natural no Brasi. Rio Oil & Gas 2022: Technical Papers, IBP, Rio de Janeiro, Brasil.
https://doi.org/10.48072/2525-7579.rog.2022.480
Barbosa, S. A. C., Silva, M. C. C. da, Meneses, M. V. M. de, Pinto, J. E. de C., Saad, H. C, & Carneiro, M. P. C.
(2024). Garantias de Descomissionamento no Brasil: análise de resultados da regulação brasileira. Rio Oil & Gas
2024: Technical Papers, IBP, Rio de Janeiro, Brasil. https://doi.org/10.48072/2525-7579.roge.2024.3341
Braga, L., & Pinto, H. (2022). The nancial aspects of oshore decommissioning and Brazilian regulatory system
in the light of the transnational legal order. The Journal of World Energy Law & Business, jwac021. https://doi.
org/10.1093/jwelb/jwac021
Bureau of Ocean Energy Management. (2024). Risk Management and Financial Assurance for OCS Lease and
Grant Obligations. Regulatory Impact Analysis. https://downloads.regulations.gov/BOEM-2023-0027-2172/
content.pdf
Chambriard, M. (2021). Regulação: a inserção dos operadores independentes no setor de O&G. Brasil Energia,
Opinião, publicado em 05 de maio. https://brasilenergia.com.br/petroleoegas/opiniao/regulacao-a-insercao-dos-
operadores-independentes-no-setor-de-og
Department for Business, Energy & Industrial Strategy. (2018). Decommissioning of Oshore Oil and Gas Installations
and Pipelines. Guidance Notes. https://assets.publishing.service.gov.uk/media/5c00f3f3e5274a0fdaaaa0f7/
Decom_Guidance_Notes_November_2018.pdf
Dernbach, J. C. (1998). Sustainable Development as a Framework for National Governance. 49 Case W. Res. L.
Rev. 1, 59.
Fam, M. L., Konovessis, D., Ong, L. S., & Tan, H. K. (2018). A review of oshore decommissioning regulations
in ve countries strengths and weaknesses. Ocean Engineering, 160, 244–263. https://doi.org/10.1016/j.
oceaneng.2018.04.001
FGV Energia. (2022). Aspectos técnicos por trás das atividades de descomissionamento: Lições aprendidas do
outro lado do Atlântico. Cadernos FGV Energia, Ano 9, nº 14. ISSN 2358-5277.
61
FGV Energia. (2021). Descomissionamento Oshore no Brasil: oportunidades, desaos & soluções. Cadernos
FGV Energia, Ano 8, nº 11. ISSN 2358-5277.
Fiorati, J. J. (1997). A Convenção das Nações Unidas sobre Direito do Mar de 1982 e os organismos internacionais
por ela criados. Revista de Informação Legislativa, 133.
Hammerson, M., & Antonas, N. (2016). Oil and gas decommissioning: Law, policy, and comparative practice (2nd
ed.). Globe Law and Business Limited.
International Law Commission. (1958). Convention on the Continental Shelf. United Nations, 499, 311. https://
legal.un.org/ilc/texts/instruments/english/conventions/8_1_1958_continental_she lf.pdf
International Maritime Organization. (1989). Guidelines and Standards for the Removal of Oshore Installations
and Structures on the Continental Shelf and in the Exclusive Economic Zone.
Kaiser, M.J. (2019). Decommissioning Forecasting and Operation Cost Estimation: Gulf of Mexico Well Trends,
Structure Inventory, and Forecast Models. Cambridge, USA: Gulf Professional Publishing. ISBN: 978-0-12-
818113.
Lockman, M., Brauch, M. D., Rodríguez, E. F. F., & Torres, J. L. G. (2023). Decommissioning Liability at the End
of Oshore Oil and Gas: A Review of International Obligations, National Laws, and Contractual Approaches in
Ten Jurisdictions. Sabin Center for Climate Change Law & Columbia Center on Sustainable Investment. https://
scholarship.law.columbia.edu/sabin_climate_change/205
Loia, F., Capobianco, N., & Vona, R. (2022). Towards a resilient perspective for the future of oshore platforms:
Insights from a data-driven approach. Transforming Government: People, Process and Policy, vol. 16, no. 2, pp.
218–230, January 1.
Mackie, C. & Velenturf, A. P. M. (2021). Trouble on the horizon: Securing the decommissioning of oshore renewable
energy installations in UK waters. Energy Policy, Elsevier, Vol. 157(C). https://doi.org/10.1016/j.enpol.2021.112479
Mackie, C., & Fogleman, V. (2016). Self-Insuring Environmental Liabilities: A Residual Risk-Bearer’s Perspective.
16 J. Corp. L. Stud. 293, 296.
Malone, J., & Winslow, T. (2018). Financial assurance: Environmental protection as a cost of doing business. North
Dakota Law Review, 93(1).
Martin, A. T. (2023). Decommissioning of International Petroleum Facilities evolving Standards and Key Issues.
OGEL Energy Law Journal, nº 5. www.ogel.org/article.asp?key=765
Panetta, F. (2022). Greener and cheaper: Could the transition away from fossil fuels generate a divine coincidence?
https://www.ecb.europa.eu/press/key/date/2022/html/ecb.sp221116~c1d5160785.en.html
Parente, V., Ferreira, D., Moutinho Dos Santos, E., & Luczynski, E. (2006). Oshore decommissioning issues:
Deductibility and transferability. Energy Policy, 34(15), 1992–2001. https://doi.org/10.1016/j.enpol.2005.02.008
Paterson, J. (2010). Decommissioning of Oshore Oil and Gas Installations. In Oil and Gas Law: Current Practice
and Emerging Trends (2nd ed., pp. 285–329). https://doi.org/10.3366/edinburgh/9781845861018.003.0010
United Nations General Assembly. (1982). Third United Nations Conference on the Law of the Sea. https://
digitallibrary.un.org/record/542895
Welsby, D., Price, J., Pye, S., & Ekins, P. (2021). Unextractable fossil fuels in a 1.5 °C world. Nature, 597(7875),
230–234. https://doi.org/10.1038/s41586-021-03821-8
63
Industrial development for the energy
transition in latin america: Lessons
learned from wind energy for green
hydrogen in Argentina
Desarrollo industrial para la transición energética en
américa latina: lecciones aprendidas de la energía eólica al
hidrógeno verde en Argentina
1.- Carolina Pasciaroni, Departamento de Economía UNS,IIESS-CONICET,
carolina.pasciaroni@uns.edu.ar
2.- Regina Vidosa, Centro de Estudios Urbanos y Regionales- CONICET, reginavidosa@gmail.com
3.- Jésica Sarmiento, jesicaisarmiento@gmail.com
4.- María Eugenia Castelao Caruana, Fundación Bariloche- CONICET,
eugeniacastelao@conicet.gov.ar
5.- Mariana Zilio, Departamento de Economía UNS, IIESS-CONICET, mzilio@uns.edu.ar
6.- Carina Guzowski, Departamento de Economía UNS, IIESS-CONICET, cguzow@criba.edu.ar
Carolina Pasciaroni
1
, Regina Vidosa
2
, Jésica Sarmiento
3
, María Eugenia Castelao Caruana
4
,
Mariana Zilio
5
, Carina Guzowski
6
Recibido: 13/11/2024 y Aceptado: 21/1/2025
64
65
La transición energética se ha consolidado como una tendencia global, exigiendo una profunda
transformación de la matriz energética a través de la eliminación progresiva de los combustibles fósiles
y la incorporación de diversas tecnologías para la generación de energía a partir de fuentes renovables.
Este trabajo analiza los procesos de aprendizaje tecnológico e innovación observados durante
el surgimiento y la consolidación de la industria eólica en Argentina, con el objetivo de desarrollar
hipótesis sobre la interacción entre la demanda y el ciclo tecnológico en el impulso de la innovación
en tecnologías de energías renovables, como la industria del hidrógeno verde, en países periféricos. A
partir de una metodología de estudio de caso, nuestro análisis sugiere que las empresas basadas en la
explotación de recursos naturales podrían no ser tan cruciales en el proceso de aprendizaje tecnológico,
especialmente durante la fase inicial del ciclo. En cambio, los proveedores intensivos en conocimiento
desempeñan un papel más relevante en el proceso de innovación que rodea la transformación de los
recursos naturales vinculados a la energía. No obstante, persisten interrogantes sobre la especicidad
de los recursos naturales energéticos y su potencial para generar oportunidades para el desarrollo de
redes de conocimiento locales.
The energy transition has emerged as a global trend, requiring a profound transformation of the energy
matrix by gradually eliminating fossil fuels and incorporating diverse technologies for power generation
from renewable sources. This paper delves into the technological learning and innovation processes
observed during Argentina’s wind industry emergence and consolidation to develop hypotheses about
the interplay between demand and the technological cycle in driving innovation around renewable
energy technologies, for example the green hydrogen industry, in peripheral countries. Based on a
case study methodology, our analysis suggests that natural resource-based rms may not be as critical
in the technological learning process, particularly during the emergence phase of the cycle. Instead,
knowledge-intensive suppliers play a more signicant role in the innovation process surrounding the
transformation of energy-related natural resources. However, questions remain regarding the specicity
of energy-related natural resources and their potential to create opportunities for the emergence of local
knowledge networks.
PALABRAS CLAVE: Energía eólica, hidrógeno verde, ciclo tecnológico, innovación, desarrollo industrial
KEYWORDS: Wind energy, green hydrogen, Technological cycle, innovation, industrial development.
Resumen
Abstract
66
1. INTRODUCTION
For some decades now, the energy transition
has emerged as a global trend that demands
an active strategy from States to transform the
challenges of this process into opportunities for
industrial development in emerging countries.
This trend requires a profound transformation
of the energy matrix, which implies the gradual
elimination of fossil fuels (United Nations, 2023)
and the incorporation of diverse technologies for
energy generation from renewable sources. These
technologies are in dierent stages of development
and, even though their adoption and diusion
may enhance the comparative advantages of the
energy sector, their impact on the technological
dynamism of its associated industries is unclear.
For example, wind energy has a high penetration
rate in South American energy markets (IRENA,
2023a) and its diusion, within an appropriate
institutional and economic framework, has
facilitated the installation of factories for blade
production in Brazil and tower production in
Argentina. At the same time, green hydrogen is
in a phase of feedback between technological
development and demonstration on a global scale.
Still, countries in the region continue to outline
their institutional frameworks without achieving
signicant technological advances, except in Chile
where the country’s rst hydrogen fuel cell vehicle
was homologated (OLADE, 2023).
In the last decade, within the framework of
neo-Schumpeterian and Evolutionary theories,
various academic studies have suggested that
the processes of learning and innovation around
industries based on the exploitation of natural
resources, such as those dedicated to the
generation of renewable energy (RE), are relevant
for economic development. These works highlight
the role that natural resource-based industries
have in the technological dynamism of the network
of actors that supplies them with equipment,
services, and knowledge and their economic
and technological relevance in South American
economies. However, they also point out that
there are conditions that enable these processes,
which are expressed in the demand conguration,
the industrial organization, the technology cycle,
and the institutional context (Andersen, Marín, &
Simensen, 2018; Crespi, Katz, & Olivari, 2018; Katz
& Pietrobelli, 2018). This work focuses on how the
demand conguration and the technology cycle
of the wind energy industry, in general, may have
inuenced the learning and innovation processes
of this industry in Argentina over the past two
decades. By distilling lessons from this context,
we gain insights into the current opportunities
and challenges for the emerging green hydrogen
sector in leveraging economic development.
67
2. DEMAND AND TECHNOLOGICAL LIFE CYCLES: EVIDENCE
FROM WIND ENERGY FOR GREEN HYDROGEN
Over the past two decades, the renewable energy
industry has witnessed two signicant trends:
i) a scale expansion in response to countries’
eorts to achieve energy security and more
sustainable economic growth, and ii) increased
internationalization resulting from the export of
energy technologies (Kim & Kim, 2015). A prime
example of these trends is China’s entry into
the global renewable energy market through
manufacturing equipment for wind power and
solar photo voltaic energy (Gandenberger &
Strauch, 2018; Kim & Kim, 2015). The promotion
of national wind power demand and its role as a
catalyst for competitive technology development,
primarily in terms of price rather than quality,
explains China’s active participation in the global
energy market (Lin & Chen, 2019; Gandenberger
& Strauch, 2018).
However, the empirical evidence regarding
the impact of demand–pull policies on the
development of energy technologies remains
inconclusive (see review by Lin and Chen (2019)).
This ambiguity may be attributed to the varying
degrees of maturity reached by dierent energy
technologies. In their comparative study of wind
power and solar photovoltaic, Kim and Kim (2015)
found evidence supporting a positive bidirectional
relationship between domestic R&D investment
and technology export. Notably, these results were
more pronounced in wind power compared to
solar photovoltaic, with the latter being considered
a more mature technology.
These ndings about the role of demand
concerning the maturity of technologies have led
to the Technological Life Cycle (TLC) concept to
comprehend the long-term patterns of innovation
and diusion processes within the energy
matrix. According to the TLC model proposed
by Anderson and Tushman (1990), the cycle
begins with a disruptive discovery that opens
new opportunities and technological trajectories.
This is followed by a fermentation stage, where
technologies compete within a highly uncertain
environment. Then, the third stage sees the
emergence of a dominant technological design.
Finally, the fourth stage involves incremental
change, where the technology gradually evolves
until a new technological discontinuity disrupts the
trajectory and restarts the cycle. Utterback and
Abernathy (1975) present a stylized representation
of the TLC akin to an inverted U, which combines
considerations about the type of innovation
-product or process- that predominates at each
stage of the cycle. Davies (1997) later dierentiates
technological patterns based on whether they
pertain to mass-produced goods or complex
products and systems.
From the perspective of the TLC, wind power is in a
phase of incremental change (Huenteler, Schmidt,
Ossenbrink, & Homann, 2016; Kalthaus, 2020;
Madvar, Ahmadi, Shirmohammadi, & Aslani,
2019), suppliers of wind energy equipment have
enhanced the quality of their products (Huenteler
et al., 2016) and there has been a steady
decrease in wind energy prices. Drawing on the
contributions of Davies (1997), the complexity
of energy technologies, and thus the associated
pattern of technological evolution, is determined by
two key factors: i) the complexity of the product’s
architecture, and ii) the scale of the production
process. Huenteler et al. (2016) concluded that
wind power is characterized by its complexity and
by incremental changes that combine product and
process innovations, with the latter predominating.
It’s important to highlight that the trajectory of
wind power technology involves a diverse range
of contributors and knowledge sources. As per
the ndings of Kalthaus (2020) in Germany, non-
specialized and unrelated knowledge played a
signicant role during the fermentation phase
of wind power. This can be attributed to the
involvement of technicians and engineers who
aimed to enhance environmental conditions and
oer technical alternatives to traditional energy.
In subsequent phases, the amalgamation of
new, specialized knowledge, as well as related
knowledge gained prominence. This suggests an
impending discontinuity associated with oshore
68
wind power, marked by the participation of
shipping rms in technological development. The
presence of local industries engaged in turbine
manufacturing, competitive on a global scale, is a
positive factor for the national wind energy sector
expansion and knowledge generation in this eld
(Zhang, Tang, Su, & Huang, 2020). This underlines
the importance of a diverse knowledge base
and cross-industry collaboration in advancing
renewable energy technologies.
Ampah et al. (2023) demonstrate that water-based
technologies for producing green hydrogen are
experiencing varied stages of evolution: photolysis
is in an emerging phase, thermolysis is in a growth
stage, and meanwhile, electrolysis has reached
maturity. Over the past ve years, signicant
advancements have been made in areas such as
cell design, electrodes, electrolytes, electrolytics,
processes, and control methods. It’s worth noting
that while hydrogen generation through electrolyzers
is a technology utilized in industrial processes, it has
not yet been widely adopted for power generation
due to the need for cost reduction. Consequently,
the critical points in research and development in
this eld include the use of renewable energies
(wind and solar) as a source of electrolysis,
increasing eciency, and reducing consumption
and energy costs, among others. Dehghanimadvar,
Shirmohammadi, Sadeghzadeh, Aslani, and
Ghasempour (2020) apply the Gartner Hype Cycle
model to abroad range of renewable and non-
renewable technologies to explain their stage of
development. They arm these technologies are at
dierent phases, primarily concentrated between
the disillusionment stages (photo fermentation
and dark fermentation), the slope of enlightenment
phase (photo electrochemical, thermochemical
water decomposition, and PV electrolysis), and
the nal productivity stage (electrolysis, fossil fuel
reforming, and coal gasication). Interestingly, none
of these technologies are found in the rst two
stages of the Gartner Hype Cycle, which are the
innovation trigger and peak of inated expectations.
Technological development in lagging economies
exhibits unique characteristics derived from the
local industrial trajectory, the inuence of Foreign
Direct Investment, the role of Global Value Chains,
and restrictions arising from compliance with
international regulations and standards (Crespi et
al., 2018; Katz & Pietrobelli, 2018). A comparative
study between Brazil and China reveals the
dierential strategies pursued and their impact
on knowledge generation in the wind energy
eld. While both countries have capitalized on the
inux of foreign technology, China has oriented
its strategy towards learning and developing
national technology, resulting in patents and
national brand turbines. In contrast, Brazil still
relies on Foreign Direct Investment (Gandenberger
& Strauch, 2018). In Argentina, the lack of
coordination between energy policies and science
and technology policies, coupled with their lack of
continuity, has posed a limitation to technological
development in the eld of wind energy (Aggio,
Verre, & Gatto, 2018; Stubrin & Cretini, 2023).
69
This study adopts a case study approach to
analyze the technological learning trajectory of
the domestic wind turbine industry in Argentina.
The analysis centers on two domestic rms that
demonstrated the capacity to develop and, to a
certain extent, commercialized their wind turbine
designs. While this case study does not encompass
a comprehensive historical perspective, it delves
into the institutional trajectory, strategies, and
technological capabilities that these two key local
industry players built over the years. In addition, the
research explores the economic, technological,
and political landscapes that underpin the
emergence of a green hydrogen industry, both on
a global and national scale.
The wind energy industry emerged in the 1970s
in countries like Denmark, Germany, and the
United States. But it was in the late 1990s
when the technology design consolidated and
competition among rms began to be focused
on the internationalization of technology to
emerging countries (Gipe & Möllerström, 2023;
Verbong, Geels, & Raven, 2008). Until then,
vertical integration in wind turbine manufacturing
had predominated, resulting from the organic
expansion of the incumbent companies and its
concentration through mergers and acquisitions
(Jacobsson & Johnson, 2000). But around
mid-2000, the internationalization process
changed the business model giving way to the
emergence of suppliers –mostly not knowledge-
intensive– located in the same countries where
wind farms were installed, while bigger rms
continued to specialize in wind turbine design and
manufacturing. So, by the decade of 2000, wind
energy technology was mature, even though, as it
was mentioned previously, its innovative process
has remained focused on improving the product
throughout its life cycle, shifting from the core
sub-system to the broader range of subsystems
3. METHODOLOGY
4. WIND ENERGY TRAJECTORY
These industries were chosen due to their relevance
to the energy transition agenda in South American
countries and their distinct technological, market,
institutional, and organizational characteristics
up to the present day (Castelao Caruana et al.,
2023). The analysis is based on the information
collected from multiple secondary sources and
semi-structured interviews with representatives
from both industries.
and components that comprise wind energy
(Huenteler et al., 2016). During those years, the
demand for wind energy in the countries of the
Southern Cone was divergent, especially in Brazil
(Figure 1). Some countries, such as Argentina,
Chile, Peru, and Uruguay, managed to increase
their installed capacity, reaching values between
700-4,500 MW, while the rest of the countries
hover around 50-60 MW, on average. The rapid
increase of the wind energy installed capacity
in Brazil can be attributed to the execution of
national public programs specically designed for
RE, such as the PROINFA that in 2002 oered
feed-in tari schemes through 20-year contracts
for wind farms, biomass, and small hydroelectric
plants (Eirin, Messina, Contreras Lisperguer, &
Salgado, 2022).
In Argentina, the national government implemented
a program to promote electricity generation from
RE sources in the late ´90 that promoted the
installation of some wind farms with European
technology. However, the benets of this program
were diluted with the exit from the xed exchange
rate regime called convertibility that the country
70
went through in 2001. It was not until 2009 that
the national government again promoted the
installation of this type of technology with the
GENREN program under the orbit of ENARSA.
1
This program tendered contracts for the electricity
supply from RE sources, incorporating incentives
for wind farms to develop with equipment and
components produced locally. However, it had a
partial impact. Even though it tendered contracts
for 500 MW and obtained oers for 1,000 MW
(approving 754 MW), by the beginning of 2018
1.- Energía Argentina S.A. (ENARSA) is a company owned by the national government, established in 2004 to exploit and commercialize
hydrocarbons, natural gas, and electric energy.
only two wind farms with 130 MW had been
completed, and 10 wind farms with 445 MW
had started and interrupted their works. This
was due to an unstable macroeconomic context
that strongly conditioned access to international
nancing. In this context, two national wind
turbine manufacturers emerged –IMPSA and NRG
Patagonia – which drove the development of local
suppliers.
Some years later, within the framework of national
Law 27.191/2016, the RenovAr program and
the Renewable Energy Term Market (MATER)
once again promoted the growth of wind energy
demand in the country. The former was a national
tender program for electricity supply contracts
from ER sources that provided tax benets
associated with the incorporation of national
components established by Law 27.191. The
latter, also regulated by this law, is a market
for electricity supply contracts from renewable
sources between large users (with consumption
greater than or equal to 300 KW) and generators
of this type of energy participating in the Wholesale
Electric Market (MEM). However, this institutional
Figure 1. Electricity Installed Capacity from Wind Energy (MW) by Country (2007-2023)
Source: own elaboration with data from IRENA (2024)
framework did not prioritize the development
of domestic technology and associated local
linkages (Aggio et al., 2018; Cappa, 2023), but
the growth of the renewable energy sector in a
complex macroeconomic context marked by
energy scarcity.
71
2.- Founded in Argentina in 1907, IMPSA achieved a signicant international presence, operating in 40 countries and maintaining a workforce
of 3,500 employees. Subsequently, by 2021, this gure had decreased to 720, and the company is currently undergoing a process of
corporate restructuring.
3.- Within the framework of this program, two 1.5 MW wind turbines were installed in El Tordillo wind farm, one designed, built, and installed
by NRG Patagonia and the other by IMPSA Wind. Both were put into operation in 2009/10, but the park began operating in the MEM in 2013.
Its owner was Vientos de la Patagonia I, comprised of ENARSA and the Province of Chubut. IMPSA Wind also signed two contracts with
Arauco 1 Wind Farm, owned by the state energy company La Rioja SAPEM (75%) and ENARSA, to manufacture, operate, and maintain 15
IWP-83 wind turbines of 2.1 MW and 11 wind turbines of 2 MW each. This wind farm was inaugurated in 2011. In addition, in 2015 IMPSA
Wind installed 4 wind turbines of 2 MW each in El Jume wind farm, owned by the public company Energía Santiago del Estero S.A. (IMPSA,
2024; (Aggio et al., 2018).
At the beginning of the 2000, IMPSA (Industrias
Metalúrgicas Pescarmona S.A) was a
transnational company with Argentine capital
2
,
dedicated to developing complex hydroelectric
energy projects and designing and manufacturing
capital goods for these and other industries. Its
advanced technological capabilities and the
expansion of its production capacities beyond
Latin America enabled IMPSA to access global
and distant markets such as Asia, Europe
and North America (Papa & Hobday, 2015). In
2003/4, with a strong commitment to innovation,
IMPSA began a technological learning process
for the design and manufacture of wind turbines
based on its knowledge and experience in uid
mechanics and synchronous generators from
the design and manufacture of hydroelectric
power plants, handling of high structures and
frequency conversion derived from the design and
manufacture of port cranes and control systems.
By 2005, when the average power of wind
turbines globally was around 1.0–1.3 MW and the
most consolidated European companies began to
internationalize, IMPSA developed a 1.0 MW wind
turbine that was tested in a wind farm in Argentine
Patagonia. Although this machine did not reach a
year of life due to problems in the control system,
this milestone inaugurated the IMPSA Wind
business unit, marking the rm’s foray into the
wind energy industry. However, Brazil’s growing
economy and dynamism of the wind market by
mid-2000, compared to Argentina’s economic
decline and wind market halt, convinced IMPSA
to shift their main wind operations and assets
towards Brazil (Papa & Hobday, 2015). Given that
the market was taking o in this country and that
mature technologies already existed internationally,
the company chose to accelerate the technological
4.1. IMPSA
learning process by acquiring the license from
Vensys, a German rm to manufacture a direct
transmission wind turbine of 1.5 MW. By 2007/8
the company inaugurated its subsidiary named
Wind Power and a production facility to produce
wind turbines and generators in this country.
Motivated by local regulations that established
60% national content, IMPSA promoted the
development of local and regional suppliers that
allowed the diversication of the supply chain,
and the growth of the industry associated with
the sector in Brazil. By 2014, IMPSA was the
third producer of wind energy in this country. It
was building wind farms for 480 MW and it had
a contract for the manufacture, installation, and
operation and maintenance of 287 generators for
574 MW for 2018. In Argentina, IMPSA developed
the rst wind turbine with its own technology in
Latin America, called UNIPOWER® IWP-70 of
1.5 MW, which obtained international certication
in 2010. This wind turbine and the subsequent
ones -IWP83 and IWP-100- were manufactured
in the IMPSA Argentina facilities, reaching a local
content of 72 % in the IWP100 model of 2 MW.
In parallel, IMPSA obtained contracts with public
companies for the provision of wind turbines within
the framework of the GENREN program between
2009 and 2011
3
.
As in Brazil, the development of this equipment
encouraged the creation of a solid network of
local suppliers for the sector that included the
production of towers and components of the
turbines, the repair of wind blades and nacelles,
the construction and protection of foundations and
towers, and the manufacture of electronic controls.
However, this demand was unstable over time
and uncoordinated from industrial and scientic
72
policy (Aggio et al., 2018). Despite the various
improved models that the company developed to
stay at the fore front of the international industry,
by 2015 the power of its IWP-100 model was
lagging the oer of large international companies,
which, along with other barriers, made it dicult to
enter the RENOVAR (Table 1). By the end of 2016,
40% of the installed power came from turbines
manufactured by companies from Denmark and
23% from France, only 27% from Argentina (Aggio
et al., 2018).
NRG Patagonia was created in 2006 in Argentina
by domestic companies in the oil and gas industry
that detected the window of opportunity posed
by the absence of wind turbines adapted to
the winds of Patagonia at an international level.
The rst Wind Farms installed in this region in
the 90s showed the lack of specic information
about the regional wind resources (dierent from
the predominant in Europe) and of technology
adapted to its characteristics. The company
then acquired the design of a Class II turbine
in Germany with software from Denmark and
hired German engineering to adapt it to the
requirements of the winds of Patagonia (Class I),
seeking that most of the parts were manufactured
in Argentina. In this way, it developed internal
productive capacities to manufacture, assemble,
mount, and operate Class I turbines of 1.5 MW,
while the rest of the components were acquired
from suppliers, many of them local. One bought
the license for the electric generator abroad to be
able to manufacture it in the country.
As happened with IMPSA, this technology
was initially installed in El Tordillo Wind Farm in
2019/10 owned by a public company to integrate
a park of 3 MW, located in Comodoro Rivadavia,
Province of Chubut. However, the initiative was
discontinued and given the fall in projected
demand and the diculty in accessing local public
and private nancing, the scaling of the prototype
Due to various nancial events in Argentina, Brazil,
and Venezuela, IMPSA had to restructure its
capital at the beginning of 2018. Currently, IMPSA
is a company dedicated to the EPC of wind farms
and SFV, including the production of hydrogen, the
repair of large wind equipment, and the provision
of operation and maintenance services, including
the application of AI for preventive maintenance.
4.2. NRG Patagonia
wind turbine for Class I winds was discontinued.
However, by 2014, the company embarked on
the development of a Class II team in consortium
with the National University of Patagonia San Juan
Bosco and with economic support from Ministry of
Science and Technology for about 6 million USD.
The development involved the internal capacities
of the rm’s engineers and external specialists
from Europe. Although initially this turbine was
thought of as a suitable technology to generate
energy with the wind resource available in other
parts of the country, given the increase in the
power of foreign turbines, it became a suitable
team (from 1 to 2 MW) for low-scale users
electric cooperatives, municipalities and/or small
and medium-sized enterprises- located in regions
with not so extreme winds
4
. This segment is a
niche with potential from the creation of MATER
and Law 27.424/2017 of distributed generation
of low interest for large multinational companies.
Currently, these wind turbines have around 50%
of national components from 12 local companies.
In addition to this strategy, the company created
ENAT in 2016, a spin-o that capitalizes on
the techno-productive knowledge and market
acquired in the wind market by the rm to provide
knowledge services such as detection of sites
with energy resources of interest, design of wind
farms or pre-feasibility analysis of connection to
the electrical system.
4.- In 2021, NRG Patagonia installed a 1.5 MW Wind turbine for self-consumption by the Castelli Cooperative in Buenos Aires Province.
73
Green hydrogen has aroused great expectations
at the global level due to its potential as an energy
vector for renewable energy sources, like wind
and solar photovoltaic energy. Its development
could complement other sources of energy and
promote the decarbonization of energy-intensive
industries (steel, chemicals, cement, and transport)
as well as other sectors that use hydrogen in
their production processes (petrochemicals,
food, and electronics) (Zabaloy, Guzowski, &
Didriksen, 2021). In addition, hydrogen and its
derivatives have a comparative advantage in
specic applications required by sectors that
need to stabilize the networks supplied by a large
proportion of intermittent sources, such as solar
photo voltaic and wind power (IRENA, 2023b).
Green hydrogen is produced by the electrolysis of
water, which requires both the availability of fresh
water and a renewable energy source. In Latin
America, there is a convergence of both natural
resources in their potential to produce it, as auctions
in Chile, Mexico, and Brazil oer the lowest prices
for wind power and solar photovoltaic energy in
the world, and water scarcity is not a constraint for
most countries in the region. So, the development
The analysis of this sector shows several issues.
First, the specicity of the NR -winds with greater
load capacity and turbulence in the Patagonia
region– represented an opportunity that only
some companies with a trajectory in the energy
sector could identify at the beginning of the ´2000
given the low level of specialized knowledge that
existed in the country about this industry. Even
so, the specicity of this NR did not represent a
barrier to entry for foreign companies because it
is an NR with similar characteristics in other parts
of the world and also in those years the global
wind industry was already mature and relatively
concentrated although more dispersed than
at present - and under a dynamic of innovation
focused on the continuous improvement of the
subsystems and components that make up
wind energy, which quickly closed this window of
opportunity. However, in less than a decade, the
national companies analyzed managed to develop
the necessary technological capacities to take
advantage of this opportunity through a learning
process based on internal mechanisms (existing
capacities) and external (license purchase) in the
case of IMPSA and merely external in the case
of NRG (hiring of engineering for the adaptation
of an existing design to local requirements), at
least in the rst stage. This learning process was
supported by a timid internal demand, essentially
driven by public companies, but also, in the case
of IMPSA, by an external, regional, and dynamic
demand.
5. GREEN HYDROGEN, AN EMERGING INDUSTRY
of green hydrogen in Latin America could be an
advantage for potential consumers further away
from the region, such as China, the European
Union or the USA, as they could compensate for
the distance with cheap renewable energy and
less risk of geopolitical conict than those from
closer, but more politically unstable regions.
The challenge for Latin American countries is to
dene how to develop the energy transition for
which they have the natural resources but not
the capital or the technology, considering that
hydrogen production is complex and requires
long-term investments that allow innovation in
the construction of production plants, storage,
and transportation, as well as in the electrolysers
production.
Electrolysis seems to be a highly modular
technology with a steep learning curve. Electrolysis
could be today what solar photovoltaic energy
was 0 to 15 years ago, on the verge of moving
from niche to mainstream technology. While this
nascent sector is still developing, electrolysers
made in China are 75% cheaper than those
made in the West, according to Bloomberg New
74
Energy Finance. This is a gap that Latin American
countries should close if they are to develop a
competitive hydrogen ecosystem, as they have
an important endowment of natural resources for
low-emission hydrogen production but are still
far from the technological frontier of electrolyser
production.
In Argentina, the search for insertion in this
ecosystem led to the emergence of some
projects promoted by public and private
companies (Hychico, Y-TEC), and others by
foreign companies and organizations, with varying
degrees of progress. Hychico has a pilot plant in
Chubut that produces 120 m3 of green hydrogen
per day using wind energy, currently destined for
the domestic market. The project, launched in
2008, is a spin-o of the CAPEX Company with
a track record in the conventional energy sector
and is an example of synergy between fossil
and renewable energies: two wind farms and
two electrolysers at the foot of a conventional
eld. At the same time, Y-TEC –a technology
company of YPF and Consejo Nacional de
Investigaciones Cientíticas y Técnicas- launched
a consortium for the development of the hydrogen
economy in Argentina in 2020, called H2Ar, to
create a collaborative workspace between local
companies interested in integrating the blue or
green hydrogen value chain (YPF, 2022). On the
other hand, foreign entities -such as the Australian
company Fortescue Future, the Fraunhofer
Institute of Germany, and the MMEX Resources
Corporation of the U.S.A.- have evidenced a deep
interest in promoting green hydrogen production
in Argentina. These external actors have focused
on studying the available natural resources and
their environment wind and water sources and
topography - to assess the technical and economic
feasibility of installing green hydrogen production
plants powered by wind energy, proposing the
emergence of hydrogen hubs in the provinces of
Buenos Aires, Río Negro, and Tierra del Fuego.
Despite all these actions, there are few technical
and environmental studies to assess the impact
of green hydrogen production and poor standards
to regulate the activity. In recent years, the
international context has promoted the interest
of the State, both at the national and provincial
levels, but there is still no broad consensus on
the benets this sector could bring to the country,
on the role of government in promoting it, and on
the role of hydrogen as part of industrial policy
(Castelao Caruana, et al. 2023).
The rst Hydrogen Promotion Act (Law 26.123)
was introduced in 2006 to promote research
and development of technologies to produce
hydrogen from renewable and non-renewable
sources (Guzowski, Zabaloy, & Ibañez Martín,
2022), expiring at the end of 2021 due to a lack
of regulation. In 2023, the national government
submitted a new draft law on the promotion of
hydrogen production, which was strongly criticized
because of the 35% national content requirement
for each project (including electrolysers and
power generation equipment), the duration of the
promotion scheme, the requirement to contribute
a percentage of the investment to a future specic
allocation fund, and the multiplicity of agencies
involved in hydrogen regulation. In September
2023, the National Strategy for the Development
of the Hydrogen Economy presented the basis
for the promotion of low-emission hydrogen, but
the change of government in December put all
hydrogen-related regulations (including the draft
law) on hold and does not seem to have the will
to move forward, at least in the short and medium
term.
75
This work delves into the technological learning
and innovation process observed during the
emergence and consolidation of the wind industry
in Argentina to develop some hypotheses about
the role the inter play between demand and the
technological cycle may have in driving innovation
around renewable energy technologies, especially
green hydrogen, in peripheral countries.
This paper focuses on the trajectory of Argentina’s
wind industry, analyzing the technological learning
processes undertaken by IMPSA and NRG
Patagonia over the last two decades. Initially, these
companies designed and manufactured wind
turbines tailored to the unique wind conditions of
the Patagonian region. We juxtapose this evolution
with global wind industry trends and internal
and external demand policies that inuenced
these learning processes. Our ndings propose
hypotheses applicable to understanding learning
dynamics in other emerging energy industries.
The results show that despite mature technology,
there remain opportunities for technological
innovation when local or regional market diusion
Table 1. Non-exhaustive mile stones on the evolution of the wind industry at dierent scales
of analysis
Source: own elaboration from secondary sources
6. CONCLUSIONS
is limited. While the accumulated technological
capabilities and the learning process play a pivotal
role in the initial stages, internal demand becomes
central during technology’s take-o phase,
especially for in-house designs. Notably, external
demand from countries where the technology is
not yet widespread can also drive technological
development. Brazil’s role in IMPSAs consolidation
as a wind turbine supplier exemplies this
phenomenon.
Contrary to prevailing literature, our study
suggests that natural resource-based rms may
not be as critical in the technological learning
process, particularly during the emergence
phase of the cycle. Instead, knowledge-intensive
suppliers —those involved in designing, adapting,
and manufacturing technology—play a more
signicant role in the innovation process around
the transformation of energy-related natural
resources.
Doubts arise regarding the level of specicity
of energy-related natural resources and their
potential to open windows of opportunity for
the emergence of local knowledge networks.
Regardless of whether these opportunities exist,
or rms seek to capitalize on those resulting from
foreign technology diusion, they must thoroughly
understand the sector and develop the necessary
technological and commercial capabilities to
achieve technological innovation.
These observations are important for the
current learning process around green hydrogen
production, as there is already an international
industry advancing towards its consolidation
and the electrolysis technology is maturing. In
Argentina, a few local companies with frontier
technological capabilities are studying the process
of green hydrogen production to become key
players in the domestic industry, not so much in
the production of electrolysers as in the provision
of equipment or services to upgrade production
processes. Given the lack of a supportive
institutional framework and the neoliberal political
context in the country, questions arise regarding
the potential opportunities the external demand of
green hydrogen and its by-products-this time from
developed countries- may bring for technological
learning and innovation in this nascent sector.
7. REFERENCES
Aggio, C., Verre, V., & Gatto, F. (2018). Innovación y marcos regulatorios en energías renovables: el caso de la
energía eólica en la Argentina. DT14.
Ampah, J. D., Jin, C., Fattah, I. M. R., Appiah-Otoo, I., Afrane, S., Geng, Z., . . . Liu, H. (2023). Investigating the
evolutionary trends and key enablers of hydrogen production technologies: A patent-life cycle and econometric
analysis. International Journal of Hydrogen Energy, 48(96), 37674-37707.
Andersen, A., Marín, A., & Simensen, E. (2018). Innovation in natural resource based industries: a pathway
to development? Introduction to special issue, Innovation and Development, 8(1), 1-27. doi:https://doi.
org/10.1080/2157930X.2018.1439293
Anderson, P., & Tushman, M. L. (1990). Technological Discontinuities and Dominant Designs: A Cyclical Model of
Technological Change. Administrative Science Quarterly, 35, 604-633.
Cappa, A. (2023). Las reglas de contenido local: el caso de los aerogeneradores en el programa RENOVAR.
Impacto económico y factores condicionantes. Tesis de Maestría. FLACSO. Sede Académica Argentina, Buenos
Aires.
Castelao Caruana, M.E., Pasciaroni, C., Guzowski, C., Castro, M., Zabaloy, M.F., & Martin Ibañez, M.M. (2023).
Aprendizaje e innovación en las industrias de energía de fuentes renovables en Argentina: mercado, tecnología,
organización e instituciones. Revista Tempo do Mundo, (32), 133-165.
Crespi, G., Katz, J., & Olivari, J. (2018). Innovation, natural resource-based activities and growth in emerging
economies: the formation and role of knowledge-intensive service rms. Innovation and development, 8(1), 79-
101. doi:https://doi.org/10.1080/2157930X.2017.1377387
Davies, A. (1997). The life cycle of a complex product system. International Journal of Innovation Management,
1(03), 229-256.
77
Dehghanimadvar, M., Shirmohammadi, R., Sadeghzadeh, M., Aslani, A., & Ghasempour, R. (2020). Hydrogen
production technologies: attractiveness and future perspective. International Journal of Energy Research, 44(11),
8233-8254.
Eirin, M. S., Messina, D., Contreras Lisperguer, R., & Salgado, R. (2022). Estudio sobre políticas energéticas
para la promoción de las energías renovables en apoyo a la electromovilidad. In (Vol. Documentos de Proyectos).
Santiago: Comisión Económica para América Latina y El Caribe.
Gandenberger, C., & Strauch, M. (2018). Wind energy technology as opportunity for catching-up? A comparison
of the TIS in Brazil and China. Innovation and development, 8(2), 287-308.
Gipe, P., & Möllerström, E. (2023). An overview of the history of wind turbine development: Part II–The 1970s
onward. Wind Engineering, 47(1), 220-248.
Guzowski, C., Zabaloy, M. F., & Ibañez Martín, M. M. (2022). Y el hidrógeno se hizo luz ¿Qué oportunidades ofrece
el hidrógeno verde para la sostenibilidad del sistema energético argentino? Comisión de Estadísticas, Estudios y
Publicaciones, Asociación de Mujeres en Energías Sustentables de Argentina (AMES).
Huenteler, J., Schmidt, T. S., Ossenbrink, J., & Homann, V. H. (2016). Technology life-cycles in the energy
sector—Technological characteristics and the role of deployment for innovation. Technological Forecasting and
Social Change, 104, 102-121.
IMPSA (2024). Parques eólicos. Available: www.impsa.com/productos/wind/parques-eolicos/
IRENA (2023a). Regional Trends. Abu Dhabi: International Renewable Energy Agency. Available: www.irena.org/
Data/View-data-by-topic/Capacity-and-Generation/Regional-Trends
IRENA (2023b). Green Hydrogen for Sustainable Industrial Development. Abu Dhabi: International Renewable
Energy Agency, Available: www.irena.org/Publications/2024/Feb/Green-hydrogen-for-sustainable-industrial-
development-A-policy-toolkit-for-developing- countries.
IRENA (2024), Renewable Capacity Statistics 2024, Abu Dhabi: International Renewable Energy Agency.
Jacobsson, S., & Johnson, A. (2000). The diusion of renewable energy technology: an analytical framework and
key issues for research. Energy Policy, 28(9), 625-640.
Kalthaus, M. (2020). Knowledge recombination along the technology life cycle. Journal of Evolutionary Economics,
30(3), 643-704.
Katz, J., & Pietrobelli, C. (2018). Natural resource based growth, global value chains and domestic capabilities in
the mining industry. Resources Policy, 58, 11-20.
Kim, K., & Kim, Y. (2015). Role of policy in innovation and international trade of renewable energy technology:
Empirical study of solar PV and wind power technology. Renewable and Sustainable Energy Reviews, 44, 717-
727.
Lin, B., & Chen, Y. (2019). Impacts of policies on innovation in wind power technologies in China. Applied Energy,
247, 682-691.
Madvar, M. D., Ahmadi, F., Shirmohammadi, R., & Aslani, A. (2019). Forecasting of wind energy technology
domains based on the technology life cycle approach. Energy Reports, 5, 1236-1248.
OLADE (2023). Panorama Energético de América Latina y el Caribe 2023.Quito: Organización Latinoamericana
de Energía.
78
Papa, J., & Hobday, M. (2015). Running Against the Wind in Argentina: The Building-Up of Technological
Capabilities to Overcome Economic Adversity. Available: http://eprints.brighton.ac.uk/14914/1/2015%20
Hobday%20Running%20against%20the%20wind%20(2).pdf
Stubrin, L., & Cretini, I. (2023). Transición energética y oportunidades de desarrollo tecnológico local. H-Industria:
Revista de historia de la industria y el desarrollo en América Latina, 17(32), 3.
United Nations (2023) COP28 naliza con una llamada a la «transición lejos» de los combustibles fósiles, Centro
Regional de Información. Available:https://unric.org/es/cop28-introduce-por-primera-vez-los-combustibles-
fosiles/
Utterback, J. M., & Abernathy, W. J. (1975). A dynamic model of process and product innovation. Omega, 3(6),
639-656.
Verbong, G., Geels, F. W., & Raven, R. (2008). Multi-niche analysis of dynamics and policies in Dutch renewable
energy innovation journeys (1970–2006): hype-cycles, closed networks and technology-focused learning.
Technology Analysis & Strategic Management, 20(5), 555-573.
Zabaloy, M. F., Guzowski, C., & Didriksen, L. (2021). Hidrógeno verde en Argentina: desarrollo actual y perspectivas
a future. Energía y Desarrollo Sustentable: energías renovables en América del Sur, 2(6), 35-51.
Zhang, F., Tang, T., Su, J., & Huang, K. (2020). Inter-sector network and clean energy innovation: Evidence from
the wind power sector. Journal of cleaner production, 263, 121287.
79
Techno-economic assessment of the
use of green hydrogen: case study in
the ceramic industry
1.- Sergio Luiz Pinto Castiñeiras-Filho, Department of Mechanical Engineering of PUC-Rio and Institute of Energy of PUC-Rio, sergiocastfh@
gmail.com, https://orcid.org/0000-0002-7933-1763
2.- Guilherme Fortunato, Department of Mechanical Engineering of PUC-Rio and Institute of Energy of PUC-Rio, fortunato345@gmail.com,
https://orcid.org/0009-0001-5914-5277
3.- Sidnei Cardoso, School of Business IAG PUC-Rio, sidnei.cardoso@phd.iag.puc-rio.br, https://orcid.org/0000-0002-7212-6652
4.- Luis Fernando Mendonça Frutuoso, Institute of Energy of PUC-Rio, lmendonca@puc-rio.br, https://orcid.org/0000-0003-0687-5230
5.- Florian Pradelle, Department of Mechanical Engineering of PUC-Rio and Institute of Energy of PUC-Rio, pradelle@puc-rio.br, https://orcid.
org/0000-0003-4306-8083
6.- Edmar Fagundes de Almeida, Institute of Energy of PUC-Rio, edmar@puc-rio.br, https://orcid.org/0000-0001-8068-2555
7.- Eloi Fernández y Fernández, Institute of Energy of PUC-Rio, eloi@puc-rio.br, https://orcid.org/0000-0002-2033-197X
Sergio Luiz Pinto Castiñeiras Filho
1
, Edmar Fagundes de Almeida
2
, Guilherme Fortunato
3
,
Luis Fernando Mendonça Frutuoso
4
,Sidnei Cardoso
5
, Florian Pradelle
6
,
Eloi Fernández y Fernández
7
Recibido: 12/11/2024 y Aceptado: 4/2/2025
80
81
La industria cerámica en Brasil consume volúmenes signicativos de gas natural, generalmente para
atender procesos que requieren altas temperaturas. Así, el uso de H2 de bajo carbono se convierte en
una alternativa potencial para ser introducida en la matriz energética del sector, bajo una modalidad
de auto-generación y auto-consumo, con el n de reemplazar parcialmente el consumo de gas natural
en procesos industriales. Se realiza un modelado técnico-económico, utilizando la herramienta H2V-
IEPUC, sobre un estudio de caso realizado en colaboración con una empresa de la industria cerámica.
La escala de producción y uso de H2 se estimó con base en proyectos internacionales y tomando
como referencia los procesos industriales actualmente implementados en una fábrica. La viabilidad
del proyecto de hidrógeno verde se demuestra mediante un análisis de sensibilidad con variables
técnicas y económicas, además de presentar un escenario determinista de viabilidad. La comprensión
del estudio de caso contribuye a los subsectores de la industria al arrojar luz sobre las ventajas y
barreras relacionadas con la incorporación de H2 de bajo carbono en las operaciones, contribuyendo
a la construcción de proyectos ambiental y económicamente sostenibles.
The ceramic industry in Brazil consumes signicant volumes of natural gas, usually for attending to
processes that require high temperatures. Thus, the use of low-carbon H2 becomes a potential alternative
to be introduced into the sector’s energy matrix, under a self-generation and self-consumption modality,
in order to partially replace natural gas in industrial processes. Technical-economic modeling is carried
out, using the H2V-IEPUC tool, on a case study conducted in partnership with a ceramic industry
company. The scale of production and use of H2 were estimated based on international projects and
taking as a reference industrial processes currently implemented at a factory. The feasibility of the green
hydrogen project is demonstrated by carrying out a sensitivity analysis with technical and economic
variables, in addition to presenting a deterministic feasibility scenario. The understanding of the case
study contributes to industry subsectors by shedding light on the advantages and barriers related to
the incorporation of low-carbon H2 in operations, contributing to the construction of projects that are
environmentally and economically sustainable.
PALABRAS CLAVE: Palabras clave: hidrógeno, electrólisis, oxígeno, proceso de alta temperatura,
cerámica.
KEYWORDS: hydrogen, electrolysis, oxygen, high-temperature process, ceramic
Resumen
Abstract
82
1. INTRODUCTION
The ceramic industry can be divided into two main
categories: red ceramics and white ceramics.
Red ceramics are typically associated with
large-scale structural uses in civil construction
(bricks, tiles, etc.), and are produced by using
rewood as the predominating energy source in
Brazil (EPE, 2018). White ceramics, on the other
hand, generally consist of higher-quality products
(ooring, tiles, porcelain, etc.) that serve more
specic functions and require a higher energy
intensity in manufacturing (e.g., in the drying
process). In this case, natural gas predominates in
Brazil as the main fuel along such a manufacturing
chain. Among the emerging uses of H₂, processes
involving high-temperature heat (above 400
ºC) can benet from this resource as a form of
decarbonization, presenting as a competitive
alternative to electrication (IEA, 2024; ENGIE,
2022). In this way, the energetic use of hydrogen
can help preserve existing industrial assets
and avoid the need for developing disruptive
technologies.
Green H₂, derived from water electrolysis using
renewable energy (such as hydric, solar, and
wind), is an energy source capable of serving this
class of processes as a substitute for fossil fuels.
In particular, the Brazilian electricity grid could be
suitable for green hydrogen production, since
hydropower stands out with a share of almost
60% as one of the main primary energy sources
(EPE, 2024). As long as the hydric scenario in
the country is favorable, the grid can sustain a
low-carbon intensity with reliable provision, for
example, facilitating the certication of hydrogen
in strict schemes (CCEE, 2024). Overall, the
combination of renewable electricity resources
in Brazil can allow elevated operational factors,
enabling the economic feasibility of electrolysis
projects while guaranteeing the environmental
attribute of hydrogen.
Notably, international experiences in the ceramics
industry have adopted pilot plants to use green
hydrogen. For example, a ceramic company in
Villareal, Spain, has invested in the GREENH2KER
decarbonization project, which aims to replace
50% of natural gas with green H₂ (IBERDROLA,
2021). Another recent experience that endorses
the technical feasibility of using a hydrogen-
natural gas mixture in the ceramic industry is a
project developed in Castellarano, Italy. Success
was reported for tests with fuel blends containing
7% H2 to decarbonize the operation of a kiln, and
there is an expectation to use mixtures with up to
50% H2 (IRIS, 2024).
Finally, although carbon credits tend to be the main
coproduct in economic assessments involving low-
carbon H2, the O2 coproduced in electrolysis is
usually neglected. Actually, only specic industrial
sectors (steel industry, healthcare systems in
hospitals, submarine projects) use it at relevant
scales (IEA, 2023). Dedicated O₂ production
systems tend to be costly for use in enhanced
combustion processes, and therefore combustion
is conducted commonly with air as comburent.
It is noteworthy that some studies are giving
purpose to this byproduct. Novaes et al. (2024)
evaluated a Power-to-Liquid process sourced
with green H2 to produce wax and syncrude as
main products. The revenue associated with O2
presented a share of 13% among the outputs,
being also almost four times more representative
than the selling of carbon credits. Assunção et al.
(2025) modeled the use of an electrolysis system
in order to supply H2 for fuel cell vehicles (i.e.,
ambulances) while O2 was stored for attending
to the healthcare systems in a hospital. Avoiding
the cost of buying O2 allowed a reduction of the
levelized cost of Hydrogen (LCOH) from 4.96 to
2.60 USD/kg. Finally, León et al. (2024) studied
a bolder model for a cement factory in Spain, in
which synfuels are produced by combining CO2
from ue gases and hydrogen from electrolysis;
the coproduced O2 was appraised through an
oxy-combustion applied to a calcination process.
Thus, the possibility of designating a concrete use
for O2 can promote the economic feasibility of H2
derived from water electrolysis.
83
In this context, this study aims to assess the
partial substitution of natural gas with green H₂
in the white ceramic sector, focusing on a drying
process at a concrete ceramic facility in São Paulo
state, Brazil (DELTA, 2024). A feasible substitution
level and electrolyzer capacity scale are assumed
in the simulation, as exemplied by the presented
international projects within the ceramic industry.
Variables surrounding this substitution are
evaluated with the H2V-IEPUC model (CNI, 2024).
The tool enables a sensitivity analysis useful to
track deterministic scenarios that are attractive
to industry companies, according to technical,
economic, and environmental metrics. Therefore,
this study aims to track conditioning factors that
enable the introduction of low-carbon hydrogen
in the ceramic industry, within the framework of a
Brazilian company, representing a novelty for the
literature.
Within the scope of assessing the feasibility of
using hydrogen as a fuel for ceramic processes,
the objectives of this paper are to model the
incremental cash ow and the net present value
(NPV) of the substitution project, within the
Brazilian company technic-economic framework;
to quantify the main partakes in the cost of green
hydrogen in the levelized cost metric (LCOH) as
well as revenues associated to coproducts (CO2
credits and O2); and consider a sensitivity analysis
on NPV with the CAPEX and electricity cost,
identied as key parameters to be combined for
the sake of the project’s feasibility. The modeling
and planning of partial substitution of natural gas
in a dedicated branch of the factory allow the
industrial player to kick o an initial pilot phase,
enabling the introduction of green H₂ in the energy
matrix. This means the adoption of a project with
a low technical risk, such as intermediate product
drying. Depending on the internal experience
gained and the technical-operational success in
the H₂ usage, the player could expand the system
rationally, either by safely increasing the natural gas
substitution in existing processes or by extending
the H₂ use to other processes within the factory.
84
2. METHODS
The ceramic-industry player facilities are located
in Rio Claro, in São Paulo’s interior, Brazil (Figure
1), contributing to the municipality’s status as the
largest ceramics production center in the Americas
and representing a signicant production scale
globally. This allowed the study case to consider
meaningful production scale magnitudes within
The factory has a dedicated natural gas line
supplying six dryers, each consuming an average of
3,450 Nm³/d of natural gas. An electrolysis system
was sized to replace 15% of the fossil fuel. Given
an annual factory operation of 8,000 hours (91.3%
operational factor), the current annual consumption
of 6.9 million of natural gas could be reduced
to 5.8 million m³/yr with the use of H₂ (317 tons of
H₂ per year) generated by a 2.5 MW electrolyzer
(ENZE CUMMINS, 2023). The simulation of physical
and cash ows and the economic analysis for the
fuel replacement project were conducted using the
H2V-IEPUC tool (CNI, 2024).
The input variables are as follows. The technical
variables of the electrolyzer were: specic electricity
Figure 1 – Ceramic factory in São Paulo State, Brazil (left) and evaluated study case (right)
Source: elaborated by the authors with data from Delta (2024).
the ceramics sector. In the factory, there are
around 10 production lines established to process
raw materials into ceramic products by using
natural in kilns and dryers.
consumption of 61.7 kWh/kg H₂, specic water
consumption of 16.92 l/kg, coproduction of 8
kg of O₂/kg H₂, and an annual electrolyzer stack
degradation rate of 1% (Khan et al., 2021). The
main economic variables are listed in Table 1.
85
Table 1 – Key input variables for the economical-nancial modeling
Sources: elaborated by the authors with data from Khan et al. (2021) and Delta (2024).
The electrolyzer CAPEX (1,452 USD/kW) and
annual OPEX (5% of electrolyzer CAPEX) were
adapted from Khan et al. (2021). Besides the
electrolyzer CAPEX, 50% of CAPEX was added due
to importation, EPC (engineering, procurement,
and construction) activities, and contingencies.
The electrolyzer project was simulated over 20
years. The total investment (27 million BRL) was
allocated in the rst two years, with 80% in the
rst year. Besides the annual OPEX, the need for
membrane replacement in the electrolyzer (20% of
electrolyzer CAPEX) was considered after 75,000
hours of operation. The cost of water for the
electrolysis was assumed to be 0.6 BRL/m³. The
annual water demand of 5,600 can be sourced
from the company’s water resources, representing
a small volume and low environmental impact
within the factory operations (Delta, 2024). The
electricity cost of 300 BRL/MWh was considered
appropriate to the factory’s circumstances. Figure
2 pictures the modeling scheme implemented to
build the cash ow.
For the incremental cash ow assessment,
the replaced natural gas was considered an
avoided cost (revenue), valued at 4.30 BRL/
Nm³. According to the reduction of natural gas
consumption (emission factor of 56.15 gCO₂eq/
MJ) (IPCC, 2014), revenues from carbon credits
were valued at 250 BRL/t CO₂eq.
Given the proximity of hydrogen production to its
nal use, the O₂ produced from electrolysis was
considered for oxygen-enhanced combustion
(OEC) purposes (CSN, 2020; Wu et al., 2010).
Therefore, through a thermodynamic analysis
focused on adiabatic ame temperature (Law,
2010), aiming at enriching the combustion air with
O₂ concentrations lower than 30% v/v, a technical
potential of saving 0.47 of natural gas/m³ of O₂
produced by electrolysis was adopted (Castiñeiras-
Filho, et al., 2024). In this way, the appraisal of O₂
aggregates revenues through natural gas savings
and the generation of carbon credits.
After entering the input variables, the H2V-IEPUC
tool (CNI, 2024) reports many relevant outputs
inherent to the simulated incremental cash ow.
The main output variables are the net present value
(NPV), the internal rate of return (IRR), the levelized
cost of hydrogen (LCOH) and its break-down into
components, and the competitiveness price of
natural gas that equalizes the implementation of
the hydrogen project with the business as usual
case. Figure 2 pictures a scheme representing
how the tools gather the input variables and build
up the cash ows. For more details about the
modeling of the cash ow, a manual is provided
with the tool (CNI, 2024).
CAPEXelectrolyzer
O&M
Residual value
CAPEX allocation
Natural gas cost
Carbon credits
7,263 BRL/kW
5% a.a.
30% do CAPEXelectrolyzer
2 years, with 80% in the 1st year
4.30 BRL/Nm3
250 BRL/t CO2
Other investments
Membrane replacement
Time horizon
Electricity cost
Water cost
50% of CAPEXelectrolyzer
20% of CAPEXelectrolyzer
20 years
300 BRL/MWh
0.6 BRL/m3
86
Figure 2 – Simplied scheme for estimating revenues and expenses in the modeling
Project expenses
Project revenues
Source: elaborated by the authors.
According to the methodology outlined above, a
technical and economic analysis was conducted
for two scenarios: a base (conservative) scenario
that ignores the potential value of O₂; and a
promising scenario that considers O₂ appreciation.
It is important to highlight that the latter scenario
disregards costs related to O₂ processing and
conditioning from electrolysis, as well as other
The cash ow and accumulated cash ow of the
base and promising scenarios are presented in
Figure 3. The base scenario demonstrates the
economic unfeasibility of the project, based on the
economic assumptions outlined in Table 1. A major
issue was that the annual costs (O&M, electricity,
etc.) consistently exceeded the revenues (natural
gas avoided cost and carbon credits) associated
with the partial substitution of natural gas by green
H₂. Notably, in year 11, the need to replace the
electrolyzer membrane after 75,000 hours of
operation showed up as a relevant cost, further
impacting the economic viability of the project.
costs associated with equipment and infrastructure
adaptations needed for OEC implementation. In
addition to the deterministic results for the context
presented in this methodology, a sensitivity
analysis of the NPV was performed concerning
the most impactful variables: natural gas cost,
electricity cost, and electrolyzer CAPEX.
3. RESULTS AND DISCUSSION
3.1. Analysis of Incremental Cash Flow for the Base and Promising Scenarios
Therefore, the base scenario is unfeasible, as it
resulted in a negative NPV of -50 million BRL and
a strictly decreasing cash ow.
On the other hand, the promising scenario
demonstrated that the ability to valorize the O₂
produced from electrolysis enables the project’s
accumulated cash ow to grow, reecting the
generation of revenues greater than the operational
costs. It is noteworthy that the use of O₂ to displace
0.47 of gas/m³ of O₂, with a natural gas cost of
4.30 BRL/m³, generates a value of approximately
2.021 BRL/m³ of O₂. In addition to this revenue
87
Figure 3 – Cash ow overview for the base scenario (above) and the promising scenario (below)
Source: elaborated by the authors.
Figure 4 demonstrates the breakdown of the
Levelized Cost of Hydrogen (LCOH) in the evaluated
scenarios, as well as the cost of the fossil fuel above
which the use of hydrogen becomes competitive.
The base scenario resulted in an LCOH of 5.56
USD/kg of H2. The main components were the
cost of electricity (3.85 USD/kg, 64% of costs)
and the CAPEX of the electrolyzer (1.47 USD/
kg, 24.5% of costs). Therefore, reducing these
costs is relevant to make the electrolysis projects
viable and minimize the cost of the hydrogen
produced. Among the cost reducers, the carbon
3.2. Levelized Cost of Hydrogen (LCOH) structure in the scenarios
from fuel savings, an additional CO₂ emission
reduction of 0.972 kgCO₂/m³ O₂ valued at 250
BRL/t CO₂ results in an extra revenue of 0.243
BRL/m³ of O₂. This potential valuation highlights
the importance of conducting R&D to explore the
utilization of O₂ in industrial processes or even to
seek its commercialization with third parties.
Finally, although Figure 3 shows that the scenario
appraising O₂ seems to have a favorable cash
ow, its NPV was equal to -0.822 million BRL and
the IRR was 4.7. From an objective perspective,
even the valorization of O₂ is not sucient to
approve the implementation of the electrolysis
project; however, the feasibility was very close
with regard to the discount rate of 5%. This result
demonstrates that access to low-interest nancing
options, crucial for stimulating decarbonization
projects, could contribute to the adoption of H₂ in
the ceramics sector.
credits contribute to a reduction of 0.34 USD/
kg of H2 produced. Additionally, for the sake of
the economic competitiveness of H2, natural gas
would need to cost 8.55 BRL/m3 in the base
scenario, nearly double the cost adopted (4.30
BRL/m3), demonstrating the unfeasibility of the
project.
88
Figure 4 – LCOH for the base scenario (on the left) and promising scenario (right), and
competitiveness cost of the fossil source.
Source: elaborated by the authors with the tool in CNI (2024)
In the promising case, the O2 contributed to a
reduction of 2.43 USD/kg in the LCOH, in addition
to increasing the carbon credit revenue to a total
of 0.63 USD/kg of H2. Thus, the LCOH in the
promising case reached 2.84 USD/kg, proposing
a competitiveness value for the fossil fuel of 4.34
BRL/m3. As assessed in the previous section,
where the natural gas price was established at
4.30 BRL/m3, the substitution project is very close
to being viable. Therefore, a structural increase
As observed in the LCOH components, the relevant
costs are: the cost of the fossil fuel, the electricity
cost, and the electrolyzer CAPEX. Figures 5 and
6 show the NPV sensitivity to variations in these
parameters for the base and promising scenarios,
respectively.
in the price of natural gas over the project’s time
horizon, for example, can turn the NPV positive,
assuming that the other assumptions in Table 1
remain constant.
3.3. Analysis of the sensitivity of the NPV to relevant economic variables
89
Figure 5 – Sensitivity analysis of NPV in the base scenario (neglecting O2)
Figure 6 – Sensitivity analysis of NPV in the promising scenario (appraising O2)
Source: elaborated by the authors with the tool in CNI (2024)
Source: elaborated by the authors with the tool in CNI (2024)
Note: Other parameters are constant as in Table 1. Values in green highlight scenarios where the
NPV is greater than zero.
Note: Other parameters are constant as in Table 1. Values in green highlight scenarios where the
NPV is greater than zero.
90
The base scenario shows that only with an
electricity cost between 60 and 120 BRL/MWh
would be possible to make the project viable,
given the reference price for natural gas of 4.30
BRL/m³. If the cost of natural gas increases by
50%, an electricity cost as low as 120 BRL/
MWh would be necessary to achieve economic
feasibility, for example. Regarding the electrolyzer
CAPEX, a 40% cost reduction (i.e., 4,358 BRL/
kW) would only make the project viable for natural
gas prices as high as 7.74 BRL/m³.
In the promising scenario, the contexts that
make the decarbonization project viable are
more diverse. An electricity cost of around 180
BRL/MWh would already make the project viable
even if the cost of natural gas was reduced by
20%, to competitive levels as low as 3.44 BRL/
m³. Regarding the electrolyzer CAPEX, a 40%
reduction of it would also favor the viability of the
project.
Thus, the sensitivity analyses highlight that
the accessibility of the ceramics industry to
low electricity costs is essential for the rational
introduction of green H2 into its energy matrix.
In the Brazilian context, the industry can invest
in distributed or self-generation projects with
renewable energy, which may allow access
to more competitive electricity costs. This
alternative benets either the electrolysis project
or other industrial operations, besides ensuring a
renewable energy backing for the H2 produced
and the electricity matrix of the factory. In addition
to this route, the factory can seek negotiations in
the free energy market so as to achieve electricity
costs in accordance with the scope of producing
H2 for decarbonization purposes.
With a lesser impact, the electrolyzer cost is also
relevant. Therefore, it is emphasized that the sector
can seek nancing sources for capital goods
to mitigate the CAPEX burden, based on the
decarbonization goal pursued by both industrial
agents and government bodies. Proper project
structuring for electrolysis, with the support of
existing credit lines, may be a more appropriate
short-term alternative, rather than waiting for the
eect of economies of scale over electrolysis
technology.
Based on the results above, the sensitivity
analysis of the NPV with the costs of natural gas
and electricity was reproduced for the base and
promising scenarios, considering an electricity
cost of 160 BRL/MWh and a 50% reduction in
the electrolyzer CAPEX (3,632 BRL/kW) as a new
reference level. It is important to note that these
references are supported by the perspectives of
the excess supply of renewable electricity in Brazil
(Brasil Energia, 2024) and current electrolyzer cost
levels (BloombergNEF, 2024).
Figure 7 shows the results of this analysis,
demonstrating that the reduction in these two
variables favors the project’s viability. In the new
reference case, a positive NPV of 1.0 million
BRL was found for the base scenario, without
considering the value of O2. In the context of an
increase in the cost of natural gas, the project
remains viable. In the promising scenario, which
takes into account the use of O2, the NPV of the
new reference is 50 million BRL. Furthermore, the
project remains viable even with highly competitive
natural gas prices, as low as R$ 0.86/m3.
Finally, the evaluated scenario supports the
result regarding the importance of low electricity
costs and electrolyzer CAPEX. In particular,
the consideration of the value of O2 presents a
relevant potential to mitigate the cost of hydrogen
production.
91
The case study conducted with a ceramics
industry company demonstrates the potential for
hydrogen production at costs between 2.84 and
5.56 USD/kg H2. The modeled incremental cash
ows were unattractive and misaligned (NPV lesser
than 0) with the technical-economic risk in the
current context established with the company. By
breaking down the LCOH, the main contributors
identied in this metric composition were the
CAPEX, electricity cost, and O2 valuation. In sum,
the hydrogen production project for partial natural
gas replacement is only viable if the potential value
of the oxygen (O2) co-produced in electrolysis
is fully exploited, which can be achieved
through oxygen-enriched combustion (OEC) or
commercialization with third parties. Besides, the
sector must be able to value avoided emissions
at 250 BRL/t CO2. However, since the analysis
does not account for O2 processing costs and
equipment adaptation, it remains essential to seek
Figure 7 – Sensitivity analysis for the base scenario (top) and promising scenario (bottom) under
the new reference
Source: elaborated by the authors with the tool in CNI (2024)
Note: the new references are R$160/MWh for electricity cost and R$3,632/kW for the
electrolyzer CAPEX. Other parameters are constant as in Table 1. Values in green highlight that
the scenario results in a positive NPV.
4. CONCLUSION
electricity contracts at more competitive costs or
to pursue well-structured distributed generation
or self-production projects with renewable
sources to facilitate the feasibility of the project
in the long term. As indicated by the sensitivity
analysis, combining incentives for the electrolyzer
investments (halving the CAPEX) with oxygen
appraisal can enable the decarbonization project
with electricity prices as high as 288 BRL/MWh.
Additionally, access to low-cost credit lines could
be provided to the sector as a way to achieve
decarbonization goals for the industry. Overall, the
ceramic industry company can invest in the green
hydrogen project with reasonability and consider
it an eective decarbonization strategy if one of
the tracked technical-economic contexts in the
sensitivity analysis can be fullled.
It is further emphasized that the results obtained
from the case study with the ceramics industry
provide both quantication and an understanding
of the potential value for other industrial subsectors
regarding the potential for green hydrogen to
enter their energy matrices, without overlooking
the economic aspects within the energy transition
agenda. The critical role of capital costs associated
with electrolysis technology and electricity in
supporting the process viability is highlighted, as
well as the importance of valuing O2 recovery
in cases where the hydrogen produced by
electrolysis is close to its end-use, as shown in
the breakdown of the LCOH. Future studies in
this area can be expanded to other industrial
sectors and applications involving hydrogen or
derivative products, in order to explore technical
and economic viability scenarios and guide public
policies towards the development of nancing
programs or tax exemptions for decarbonization
projects.
5. REFERENCES
Assunção, R., Ajeeb, W., Eckl, F., Gomes, D. M., & Costa Neto, R. (2025). Decentralized hydrogen-oxygen co-
production via electrolysis for large hospitals with integrated hydrogen refueling station. International Journal of
Hydrogen Energy, 103, 87-98. https://doi.org/10.1016/j.ijhydene.2025.01.169
BloombergNEF (2024). Electrolyzer Costs Have Risen Last Year, and Glitches in Technology Have Given a Headache
to Manufacturers and Project Developers. Available at: https://www.linkedin.com/posts/lokesh-t-58324966_
electrolyzer-price-survey-2024-rising-costs-activity-7169669144840204288-tL2_/
Brasil Energia. (2024). Precicação horária e a geração elétrica híbrida. Available at: https://brasilenergia.com.br/
energia/precicacao-horaria-e-a-geracao-eletrica-hibrida
Castiñeiras-Filho, S. L. P., Pradelle, F. A. Y., Almeida, E. F. de, Assis, G. F. C., Oliveira-Cardoso, S. de, Frutuoso, L.
F. M., & Fernández y, E. (2024). Technical-economical valuation of oxygen as a byproduct of hydrogen production
via water electrolysis. In ROG.e 2024 (p. 3883). IBP. Boulevard Olímpico, Rio de Janeiro, Brazil.
CCEE. (2024). Certicação de Hidrogênio. https://www.ccee.org.br/certicacao_de_energia#:~:text=Como%20
solicitar%20a%20Certica%C3%A7%C3%A3o%20de%20Hidrog%C3%AAnio
CNI. (2024). Avaliação de Projetos. Available at: https://www.portaldaindustria.com.br/cni/canais/industria-
sustentavel/temas-de-atuacao/energias-renovaveis/hidrogenio-sustentavel/#avaliacao-de-projetos
CSN. (2020). Climate Action Report. Available at: https://www.csn.com.br/quem-somos/sustentabilidade/
relatorios-2020/
Cummins. (2023). Technical specications of electrolyzers Cummins ENZE. Retrieved February 2023, from
https://en.cumminsenze.com/.
Delta Cerâmica. (2024). Technical discussion on the implementation of green hydrogen in ceramics production
[Personal communication].
Empresa de Pesquisa Energética (EPE). (2018). Análise de eciência energética em segmentos industriais
selecionados: Segmento Cerâmica. Available at: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/
publicacoes/PublicacoesArquivos/publicacao-314/topico-407/PRODUTO%206_Vpublicacao.pdf
93
ENGIE. Decarbonizing Heat to Reduce Scope 1 Manufacturing Emissions. Available at: https://www.engieimpact.
com/insights/decarbonizing-heat-manufacturing
EPE. (2024). National Energy Balance 2024. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/
balanco-energetico-nacional-2024
Iberdrola. (2021). Iberdrola and Porcelanosa Address First Solution to Electrify Ceramic Coating Manufacturing
by Combining Renewable Energies, Green Hydrogen, and Heat Pump. Available at: https://www.iberdrola.com/
sala-comunicacao/noticia/detalhe/iberdrola-empresa-porcelanosa-abordam-primeira-solucao-para-eletricar-
fabricacao-revestimentos-ceramicos-combinando-energias-renovaveis-hidrogenio-verde-bomba-calor
IEA. (2024). Global Hydrogen Review 2024. Available at: https://www.iea.org/reports/global-hydrogen-review-2024
IPCC. (2014). IPCC assessment report, AR5, WG3: Mitigation of climate change. https://www.ipcc.ch/report/ar5/
wg3/
IRIS. (2024). IRIS Cerâmica Group and Edison Next for H₂ factory: the rst ceramics plant powered by green
hydrogen produced on-site. https://www.irisceramicagroup.com/en/media/iris-ceramica-group-and-edison-
next-for-h2-factory-the-rst-ceramics-plant-powered-by-green-hydrogen-produced-on-site/
Khan, M. H. A., et al. (2021). Designing Optimal Integrated Electricity Supply Congurations for Renewable
Hydrogen Generation in Australia. iScience, 24, 102539. https://doi.org/10.1016/j.isci.2021.102539
León, D., Amez, I., Castells, B., Ortega, M. F., & Bolonio, D. (2024). Techno-economic analysis of the production
of synthetic fuels using CO₂ generated by the cement industry and green hydrogen. International Journal of
Hydrogen Energy, 80, 406-417. https://doi.org/10.1016/j.ijhydene.2024.07.138
Novaes, L. da R., Santos, D. S. dos, Interlenghi, S. F., Maia, J. G. S. S., & Teixeira, A. M. (2024). Techno-economic
assessment of a power-to-liquids process with renewable energy and dierent sources of CO₂. In ROG.e 2024
(p. 3112). IBP. Boulevard Olímpico, Rio de Janeiro, Brasil. Recuperado de https://biblioteca.ibp.org.br/pt-BR/
search/49560
Wu, K., et al. (2010). High-eciency Combustion of Natural Gas with 21–30% Oxygen-enriched Air. Fuel, 89,
2455-2462. https://doi.org/10.1016/j.fuel.2010.02.002
95
Assessing Uruguay’s green hydrogen
potential: A comprehensive analysis
of electricity and hydrogen sector
optimization until 2050
Evaluación del potencial de hidrógeno verde en Uruguay:
Un análisis integral de la optimización de los sectores de
electricidad e hidrógeno hasta el 2050
1.- Technical University of Munich , TUM School of Engineering and Design, Chair of Renewable and Sustainable Energy Systems
andrea.cadavid@tum.de https://orcid.org/0000-0001-8941-6528
2.- Sidnei Cardoso, School of Business IAG PUC-Rio, sidnei.cardoso@phd.iag.puc-rio.br, https://orcid.org/0000-0002-7212-6652
3.- Universidad de la República, Facultad de Ingeniería, Grupo Interdisciplinario Ingeniería Electroquímica verodiaz@fing.edu.uy
https://orcid.org/0000-0001-5335-6404
4.- Technical University of Munich , TUM School of Engineering and Design, Chair of Renewable and Sustainable Energy Systems
thomas.hamacher@tum.de https://orcid.org/0000-0002-0387-8199
Andrea Cadavid Isaza
1
, Thushara Addanki
2
, Verónica Díaz
3
,
Thomas Hamacher
4
Recibido: 15/11/2024 y Aceptado: 09/1/2025
96
97
Uruguay se posiciona como potencial exportador de hidrógeno verde y derivados, según lo descrito en
la hoja de ruta. El objetivo principal de este estudio es explorar cómo reacciona el sistema eléctrico del
país a los objetivos delineados en la hoja de ruta. Otro objetivo es analizar cómo podría desarrollarse el
sector del hidrógeno verde basado en el precio de mercado del hidrógeno. Se propone una metodología
para distribuir los costos entre ambos sectores. El análisis revela que cada escenario presenta desarrollos
muy diferentes de los sistemas energéticos en Uruguay. Son necesarias expansiones sustanciales en
las capacidades de energía renovable, particularmente fotovoltaica y eólica, para apoyar una economía
del hidrógeno. Los escenarios impulsados por el mercado, especialmente con precios más altos del
hidrógeno, muestran aumentos signicativos en las capacidades de los electrolizadores. La viabilidad
económica de la producción de hidrógeno a precios más altos sugiere que las exportaciones de
hidrógeno podrían convertirse en un negocio rentable para Uruguay.
Uruguay is setting out to become a leading exporter of green hydrogen and its derivatives, as described
by the hydrogen roadmap. The primary aim of this study is to explore how the country’s electricity
system reacts to the goals outlined there. Another aim is to analyze how the green hydrogen sector
could develop based on the market price for hydrogen. A methodology for distributing the costs among
both sectors is proposed. The analysis reveals that very dierent pictures are painted in each of the
scenarios, leading to completely dierent developments of the energy systems in Uruguay, substantial
expansions in renewable energy capacities, particularly photovoltaic and wind power, are necessary to
support a hydrogen economy. The market-driven scenarios, especially at higher hydrogen prices, show
signicant scale-ups in electrolyzer capacities. The economic viability of hydrogen production at higher
price points suggests that hydrogen exports could become a protable venture for Uruguay.
PALABRAS CLAVE: Hidrógeno, Modelo de sistema energético, Optimización, Coste nivelado de la
electricidad, Coste nivelado del hidrógeno, Uruguay.
KEYWORDS: Hydrogen, Energy system model, Optimization, Levelized cost of electricity, Levelized
cost of hydrogen, Uruguay.
Resumen
Abstract
98
1. INTRODUCTION
The increasing global focus on green hydrogen as
an essential energy carrier reects a widespread
commitment to decarbonizing energy systems,
particularly in sectors where direct electrication is
impractical (IRENA, 2022). To meet the temperature
goals set by the Paris Agreement (United Nations,
2015), achieving signicant emission reductions
across all economic sectors is essential. This
requires decarbonizing energy, advancing
electrication, increasing the share of renewable
energies, and improving energy eciency. Green
hydrogen, produced from renewable sources via
water electrolysis, stands out as a clean energy
vector (Kumar & Lim, 2022; Stolten & Emonts,
2016) with a high energy-to-weight ratio (Chi &
Yu, 2018). Its production process, which relies on
solar, wind, or hydroelectric power, positions it as
an environmentally friendly and sustainable option
(BP, 2022; Kumar & Lim, 2022; Sánchez Delgado,
2019). With zero greenhouse gas emissions, green
hydrogen holds signicant potential as a substitute
for fossil fuels (Kumar & Himabindu, 2019; Laguna-
Bercero, 2012), particularly in “hard-to-abate”
sectors. For example, Hydrogen can be utilized in
fuel cells to regenerate electricity, power cellular
radio bases in remote locations, or drive fuel cell
electric vehicles, among other applications. It also
has the potential to replace natural gas in various
heat-dependent processes. Hydrogen can also
play a critical role in reducing iron oxide (iron ore)
to produce iron (Direct Reduction Iron, or DRI) and
steel, eliminating the need for fossil fuels in one
of the most challenging industrial processes to
decarbonize.
Uruguay, with its advantageous geographic
location and robust renewable energy
infrastructure, is well-positioned to leverage green
hydrogen production for export and to foster
the development of new industries (International
Energy Agency, 2019, 2022, Appendix A;
Ministerio de Industria, Energía y Minería,
2023a). The country has formulated its strategy,
embodied by the “Green Hydrogen Roadmap
in Uruguay”(Ministerio de Industria, Energía y
Minería, 2023b), to cultivate a domestic market for
green hydrogen and position itself as a prominent
exporter of this renewable energy resource. In the
Roadmap it is recognized that Uruguay’s potential
for renewable energy production far exceeds the
future needs of its electricity system. Uruguay’s
stability, transparent legal framework, and a
strong reputation for honoring contracts and
commitments make it an appealing destination for
large-scale projects in green hydrogen and related
elds. Uruguay is uniquely positioned to combine
hydrogen with biogenic carbon dioxide (CO2) to
produce green methanol. This methanol can be
converted into synthetic gasoline, gas, oil, or jet
fuel. Uruguay can create new energy sources that
fully replace conventional fossil fuels by harnessing
renewable resources to produce green hydrogen
and utilizing agro-industrial waste. In the short
term, Uruguay aims to develop a domestic market
for green hydrogen and its derivatives, focusing
on heavy and long-distance transportation and
green fertilizer production. The national hydrogen
roadmap projects that the costs of renewable
energy in Uruguay by 2030 would enable green
hydrogen production at values between 1.2
and 1.4 USD/kgH2 in the western region and
between 1.3 and 1.5 USD/kgH2 in the eastern
region. These competitive costs position Uruguay
as a strong contender in the export market for
hydrogen derivatives. In the long term, Uruguay
will explore the potential for oshore green
hydrogen production to further enhance its export
capabilities (Ministerio de Industria, Energía y
Minería, 2023b).
99
The roadmap is not the rst study that investigated
Uruguay’s hydrogen potential and costs for
producing hydrogen in the country.
(Corengia et al., 2020) present a case study
where they establish a simulation-based sizing
of grid-connected electrolyzer plants for the case
of Uruguay. Their limiting factor is the available
surplus electricity from the grid; the only service
that the electrolyzer would provide to the electricity
system is peak shaving. They concluded that the
produced hydrogen is too expensive compared
to traditional fuels and that the utilization of the
electrolyzer plants is too low.
(Corengia & Torres, 2022) propose a design that
involves selecting power sources, electrolyzer
types and sizes, and energy storage devices for
hydrogen production in Uruguay at various scales.
The study highlights solid oxide electrolyzers as
promising, with alkaline electrolysis preferred
over proton exchange membrane electrolysis
among current market options. It emphasizes the
importance of complementarity in energy sources
and challenges the idea of producing hydrogen
solely to use energy surplus and avoid curtailment.
(Ibagon et al., 2023) developed a model to optimize
the capacity of renewable energy facilities,
electrolyzers, storage systems, and hydrogen
transport methods to minimize hydrogen costs
in Uruguay. It analyzed the impact of hydrogen
demand scale and technological maturity (2022 vs.
2030) on production costs and the supply chain.
For medium and small demands, conversion,
processing, transport, and storage costs are
similar to energy costs. For larger demands, the
cost of renewable energy represents the most
relevant cost and pipelines are the most cost-
eective for transporting compressed gas, while
trucks are preferred for smaller demands. For
medium demand, longer distances favor liquid
organic hydrogen carriers by truck, and shorter
distances favor trucks for compressed gas. The
study predicts that advancements in technology
will reduce hydrogen production costs from 3.5
USD/kg in 2022 to 2.3USD/kg by 2030.
1.1. Literature review
The study from (Bouzas et al., 2024) examines
hydrogen production costs in Uruguay, focusing on
the impact of various techno-economic parameters.
It highlights that electricity costs are a major driver
of hydrogen production costs, especially when
low capacity factors make electrolyzer CAPEX
and OPEX more signicant. Water costs are found
to be negligible. The Weighted Average Cost of
Capital (WACC) also has a substantial inuence,
particularly in scenarios with lower full load hours
where electrolyzer investment costs dominate.
Overall, WACC signicantly impacts investment-
based costs.
Previous studies on hydrogen production in
Uruguay have focused on identifying optimal
renewable locations and estimating production and
transportation costs to centers like Montevideo.
However, they haven’t explored integration with
the existing electricity system, interactions with
current infrastructure, or the potential synergies of
an integrated hydrogen and electricity system. This
paper aims to address these gaps by assessing
how hydrogen production can be integrated with
the electricity system, evaluating infrastructure
interactions, and determining incentives for
expansion. It also provides the levelized costs of
electricity and hydrogen within such integrated
systems.
100
2. METHODOLOGY AND MODEL DESCRIPTION
This study employs a linear programming energy
system optimization model called urbs (Dorfner,
2016; Dorfner et al., 2019). The software allows
the optimization of multi-commodity energy
systems. It incorporates inter-temporal planning
to analyze development pathways, consisting of a
“perfect foresight” model, which means all future
variables are dened from the beginning. The
model minimizes the total costs of the system,
all while fullling the given commodity demands.
For further information about the mathematical
background or the tool in general, check the
documentation (Dorfner, 2023). The model in
this study encompasses the existing Uruguayan
electrical system alongside planned expansions,
optimizing the system expansion and operation
The creation of the energy model requires the
creation and denition of dierent input data and
parameters. All the interactions between dierent
technologies and commodities can be visualized
and understood through a reference energy
system. The reference system for this case can be
seen in Figure 1.
In the case of Uruguay, there are dierent
available technologies to generate electricity,
from intermittent or non-conventional renewable
energies, there are present solar and wind energy,
to be more specic, we can nd the following
technologies: Open eld PV, Rooftop PV, Wind
onshore Level I, Wind Onshore Level II, and Wind
Oshore. For each of them we have a determined
potential and generation time series, the specics
are discussed in below section 2.3. All of these
have a temporal generation time series as input,
and their output is electricity. More traditional
renewable energies such as biomass and hydro
have the advantage of being exible when they
generate electricity. For biomass, yearly energy
potential is the limit. For hydro, the dam can be
used to store the water coming from an inow time-
for electricity generation and hydrogen production.
The analysis is an inter-temporal approach
that spans multiple reference years, including
2021, 2025, 2030, 2040, and 2050, providing
a comprehensive outlook on the evolution of
Uruguay’s electricity and hydrogen landscape.
Uruguay is modeled as a single node in this
model, so the costs and respective energy losses
of any transmission or distribution lines within the
country are not considered. In this section, we will
examine the specic assumptions, models, and
data utilized throughout the study.
2.1. Reference Energy System
series. This stored water can either be directed
to its powerplant to generate electricity or be
spilled. The last technology available for electricity
production is the Oil plant, which consumes oil
for which there is a specic cost associated and
generates electricity but also direct CO2 emissions.
The domestic demand then consumes electricity;
this demand has to be fullled every single hour.
The electricity could then be stored in batteries,
so generation can be shifted in time. Electricity
is also an input for hydrogen production using
electrolyzers. This produced hydrogen to fulll the
specic demand or to sell hydrogen for a specic
price. The produced hydrogen can be stored in a
compressed hydrogen storage and then released
for use at another time. In addition to storing,
there is the possibility of curtailing electricity, which
means getting rid of overproduction when this is
the cost-optimal solution.
101
Uruguay, like any other country, assumes an
increase in its economic growth and, therefore,
its electricity consumption. The Ministry of Energy
and Mining has scenarios and projections of the
electricity demand of the national interconnected
system (SIN) until 2040 (Ministerio de Industria,
Energía y Minería, 2018). ‘For this study the
Baseline scenario (“Tendencial”) was used, where
there are no signicant changes in the demand
distribution by sector from 2018 onwards.
The growth rate from the last years was then
2.2. Demands
Figure 1 Reference Energy system for urbs model for Uruguay
Table 1. Yearly electricity demand of the National Interconnected System (SIN)
extrapolated to calculate the expected demand
for 2050. The respective values can be seen in
Table 1.
Year
Yearly Electricity Demand [GWh]
2021
11,078
2025
12,190
2030
13,525
2040
16,747
2050
20,608
102
All these calculations refer to the total yearly
electricity demand. The hourly prole is taken from
the electricity market operator (ADME, 2024) for
the year 2021 is used as a base to disaggregate
future yearly demand into hourly values. In
the case of hydrogen demand, the roadmap
(Ministerio de Industria, Energía y Minería, 2023b)
gives information in terms of electrolyzer capacity,
market size, and one singular value for the yearly
production of 2040 of one million tons H2,
corresponding to 9 GW of electrolyzer capacity.
With this last value, we can derive that for each
GW of electrolyzer, they are assuming 111.111 kg
of hydrogen a year, and this ratio is used for all the
other years. Since the roadmap goes until 2040,
The renewable potential analysis is carried out
using the open-source tool pyGRETA (Kais Siala
et al., 2022). The tool performs customizable
land use eligibility analysis based on 38 dierent
criteria (Ryberg et al., 2018) at a high spatial
resolution of 250m x 250m to estimate the
available locations and total potential of solar
and onshore wind technologies of a given region.
The tool also analyses exclusive economic zones
up until a seabed depth of 50m to calculate
the xed oshore wind potential. In addition to
potential calculation, the tool also reads historical
weather data from MERRA-2 (Global Modeling
and Assimilation Oce (GMAO), 2015b, 2015a)
and Global wind atlas (Global Wind Atlas 3.0,
2022) to calculate the hourly capacity factors of
all possible locations. The detailed methodology
is described in sources (Kais Siala et al., 2022)
and (AUTHOR, 2024). Figure 2 shows the results
of this analysis. The map on the left shows the
locations of open eld and roof top PV potentials
and the map on the right shows the locations of
but the time scope of this study is until 2050,
some assumptions were required to calculate the
2050 value; we went for a conservative approach
of an electrolyzer capacity and demand increase
of 20%, which results in 1.2 million tons for 2050.
The respective original and calculated electrolyzer
capacities and demands can be seen in Table 2.
Table 2. Specied electrolyzer capacities and estimated hydrogen demands. Based on:
(Ministerio de Industria, Energía y Minería, 2023b)
2.3. Renewable Potentials
onshore and oshore wind potentials considered
in the energy model of Uruguay. The capacity
factors for solar PV technologies are very similar
across Uruguay as it is mostly latitude dependent.
So, the total potential of 410 GW for Open eld PV
and 22 GW of Rooftop PV is considered to have
the same hourly capacity factor time series. For
wind technologies, the capacity factors are highly
dependent on the location’s geography and are
dierent across the country. So even though the
total onshore wind potential of Uruguay is much
higher, only the highest two levels of locations
are considered with 49.3% and 46.5% capacity
factors, respectively. For simplicity within the
model, the capacity factor of 54.2% taken from
an average location is assumed for the oshore
region. It should be noted that the capacity factors
of this magnitude for wind technologies are one of
the highest in the whole world, which makes them
cost-competitive compared to PV technologies
despite drastic cost reductions projected in the
future for PV. See below section 2.4.
Electrolyzer Capacity [GW]
Hydrogen demand [kton H2/year]
2025
0.1
11.11
2030
0.6
66.66
2040
9
1000
2050
10.8
1200
103
Figure 2. Renewable Energy Potentials from pyGRETA for Uruguay. Legend: Technology Potential
Yearly Capacity Factor
2.4. Technoeconomic Data
The urbs model requires various techno-economic
data inputs, including CAPEX and OPEX for all
technologies, fuel costs, and broader economic
parameters such as the Weighted Average Cost
of Capital (WACC) and discount rates for long-
term investments. For the technology-specic
data, we intentionally minimized the number of
dierent sources used. By relying on a limited
set of sources, we ensured that the assumptions
and methodologies applied across technologies
are consistent, making comparisons between
them fairer and uniform. This approach reduces
the risk of discrepancies that could arise from
using data with varying underlying assumptions,
thereby enabling a more balanced evaluation
of the dierent technologies. Investment and
operational costs vary signicantly across regions,
particularly Latin America. To estimate the specic
costs for Uruguay, we employed the methodology
introduced by the Inter-American Development
Bank in their report on optimizing the Latin
American electrical system (Inter-American
Development Bank & Paredes, 2017).
104
Table 3. Sources for the Country and Temporal-specic Input Techno-economic data
This approach involves recalculating investment
and fuel costs for each country in the region,
by using specic factors per technology and
fuel. In our case we use Brazil as a baseline and
recalculated the factors. For all technologies,
we utilized the Net Zero 2050 scenario values,
using Brazil as the baseline. The only exception
was Rooftop PV, for which we selected techno-
economic data from Europe instead of Brazil, due
to the signicantly lower costs reported for Brazil.
According to market reports, such as the recent
ones from Wood Mackenzie (Mackenzie, 2023,
2024), the current range for rooftop PV in Brazil
is between 1200 to 1500 USD/kW, which aligns
more closely with the European starting point of
1120 USD/kW in 2021. The Table 3 summarizes
the matching of dierent data sources used to
create the country-specic and year-specic input
data.
As previously mentioned, key economic
parameters still need to be dened. Studies by
(Steinbach & Staniaszek, 2015), (García-Gusano
et al., 2016), and the (OECD, 2021),
have specically examined the role of discount
rates and the Weighted Average Cost of Capital
(WACC) in energy system models, highlighting
their inuence on long-term investment outcomes.
The WACC is crucial for assessing investments,
representing the cost of capital in a region and
sector, while the social discount rate reects
the time value of money and opportunity cost
of capital. Lower discount rates favor renewable
energy, while higher rates favor fossil fuels. Due to
economic uncertainty in Latin America, adopting
a default WACC is inappropriate. Therefore, a
region-specic WACC for Uruguay was dened
using an approach proposed in the PTX Business
Opportunity Analyser tool (Oeko-Institut, 2023),
where country-specic Equity Risk Premiums
(Damodaran, 2024) are used, resulting in a WACC
of 7.38%, compared to the 5% in Uruguay’s
Hydrogen Roadmap. The WACC will be applied
uniformly across all timeframes due to the lack of a
reliable projection method. The study also adopted
an average social discount rate of 3.894% for
South America, based on recommendations for
Latin American countries (Moore et al., 2020).
Technology
Power plants
Electrolyzers
Batteries
Hy
drogen Storage
105
Figure 3. Methodology used for the cost distribution among the products, commodities or sectors
To calculate the levelized cost of electricity and
hydrogen, we consider their interrelation, as the
electrical infrastructure is aected by hydrogen
production. Using the urbs framework, our
objective is to minimize total global costs for both
electricity generation and hydrogen production. To
be able to assign the costs between these two
products we will use a methodology and approach
commonly used in life cycle analysis called
subdivision and complemented by allocation, the
graphical description of the process can be seen
in Figure 3.
Subdivision tries to assign inputs, ows, or, in our
case, costs to the singular products. The second
approach, allocation, distributes the eects and
impacts of a system equitably based on specic
characteristics of the co-products. For the
subdivision step, the investment, x, and fuel costs
to produce electricity, as well as batteries and their
costs, are assigned to electricity generation, and
the costs only related to hydrogen such as costs
for electrolyzers and H2-Storage are assigned to
hydrogen production. For the allocation step, we
take into account that the total electricity that gets
produced is used as a direct electricity demand
This methodology creates a relevant and adaptable
database for the region.
Based on the techno-economic data discussed
in this section and the estimated capacity factors
for dierent renewables from above section 2.3,
the Levelized cost of Electricity from Open-eld PV
will decrease considerably from 48 USD/MWh in
2020 to 22 USD/MWh in 2050. For onshore wind,
the decrease is from 29-31 USD/MWh in 2020 to
only 25-27 USD/MWh in 2050. For oshore wind,
LCOE decreases from 101 USD/MWh in 2020 to
41 USD/MWh.
2.5. Levelized cost of Electricity and Hydrogen
and also used in the electrolyzer, so the total
electricity generation costs, are allocated between
the electricity demand and hydrogen production,
this costs of the electricity used for H2 production
get summed to the costs which were only related
to H2 and this constitutes our total hydrogen
costs.
This method ensures a fair distribution of
investment and operational costs, recognizing
that higher hydrogen demand requires additional
investment in the electrical system but may also
enable greater integration of low-cost renewable
energies. This approach is suitable because
our model optimizes the overall system costs,
ensuring fair cost and benet assignment given
the interrelated nature of electricity and hydrogen
production.
Elec Only Cost:
Power plants, Storage
& Transmission
H2 Only costs:
Electrolyzers, Storage
& Transport
Total
System
Costs
Subdivision
Elec Costs for
H2
Allocation
by energy
Total
Electricity
Costs
+
Elec Demand
Elec for H2
Total
Hydrogen
Costs
106
To analyze the energy model and system
optimization for hydrogen production and
electricity generation in Uruguay, which aims
to produce and export hydrogen, three distinct
scenarios were developed:
Baseline Scenario (Only Electricity): This scenario
represents the expected evolution of the energy
system without implementing a hydrogen
economy. It serves as a reference point, illustrating
the system’s behavior under current policies and
technologies focused solely on electricity supply.
The model simulates the current trajectory of the
energy system, highlighting potential challenges
and limitations in meeting future electricity
demands without hydrogen integration.
National Hydrogen Roadmap Implementation
(H2 Roadmap): This scenario models the
implementation of the country’s national hydrogen
roadmap. Specic goals for hydrogen production
and utilization are set for each year, reecting the
2.6. Scenario denition
government’s strategic plan to integrate hydrogen
into the national energy mix. The roadmap includes
targets for hydrogen production capacities, and
infrastructure development. The model evaluates
the roadmap’s targets, assessing the required
capacities, investments, and resulting costs.
Market-Driven Hydrogen Production (1 to 3
USD/kg H2): In this set of scenarios, a price
signal for hydrogen is introduced, allowing the
model to determine the optimal production
and export quantities based on protability. The
model assesses whether hydrogen production is
economically viable and adjusts the production
levels accordingly. Various price points are
considered, which are kept constant throughout
the analysis period to evaluate their impact on
the global energy system. The model explores
the economic dynamics of hydrogen production,
considering various price signals and their inuence
on production decisions and export potential.
3. RESULTS AND DISCUSSION
The results show notable expansion within
the electricity sector, driven by the increased
demand necessitated by hydrogen production.
The study thoroughly evaluates the generation
matrix, Hydrogen production quantities, and their
corresponding levelized costs. The information
from all gures can also be found in the
supplementary material.
Figure 4. Installed Capacities for electricity generation per scenario and year.
107
Figure 4 illustrates the installed capacities,
and Figure 5 the electricity generation and
consumption per scenario and year. In the only
electricity scenario, there is minimal expansion up
to 2025 and 2030, with the only changes being the
addition of an already planned biomass plant and
the decommissioning of the oil plant. Hydropower
plants provide enough exibility to meet electricity
needs despite lower capacity. By 2040, signicant
changes occur as existing renewable energy
plants end their life. Photovoltaic (PV) capacity
increases signicantly by 2040 and 2050. On the
contrary, onshore wind capacity will decrease,
while oshore wind will see new installations by
2050.
Regarding electricity generation and consumption,
in all scenarios, the year 2021 shows minimal
In the hydrogen roadmap implementation
scenario, the installed capacity for 2021, 2025,
and 2030 mirrors the electricity-only scenario,
with existing renewable energies and planned
expansions being sucient for the early stages.
By 2040, signicant hydrogen demand and
depreciated renewables necessitate substantial
Figure 5. Electricity generation and consumption per scenario and year.
dierences in technology and curtailment, with
the electricity mix remaining relatively stable.
Approximately 44% of electricity comes from
hydropower, 50% from onshore wind, 2.6% from
biomass, and the remainder from PV. However, at
least 11.8% of generated electricity is curtailed in
2021.
In the electricity-only scenario, there are no
signicant changes in subsequent years. By 2040,
new large-scale renewables are not expected with
the decommissioning of existing renewable energy
sources, so biomass must provide around 5 TWh
of electricity. In 2050, with a larger expansion and
diversication of renewables, biomass returns to
operating as a peak power plant.
expansion, with PV, onshore wind, and oshore
wind capacities increasing by 2040 and 2050. This
scenario requires in total 22.4 GW of renewables
by 2040, exceeding the 18 GW new RE target in
the ocial roadmap. The new installations contrast
sharply with the existing capacity and expected
evolution.
108
The hydrogen roadmap scenario is quite similar
to the electricity-only scenario in 2025 regarding
electricity generation and consumption, with some
curtailment replaced by hydrogen production. By
2030, curtailment is fully replaced by hydrogen
production, and biomass plants operate supply
electricity for electrolyzer. In 2040 and 2050, the
expansion of renewables, supported by exibility
measures, allows direct operation of electrolyzers.
However, 23% of electricity is curtailed in 2040
and 29% in 2050.
For the market-driven hydrogen production
scenarios, results vary widely based on the given
hydrogen prices. In the initial years (2021 and
2025), installed capacities remain similar to the
only electricity scenario, except for the 3 USD/
kg H2 scenario, which sees additional onshore
wind by 2025. By 2030, higher price scenarios
(2.5 and 3 USD/kg H2) show signicant PV and
onshore wind capacity expansions. From 2040
onwards, scenarios diverge more. The 1 USD/
kg H2 remains similar to the electricity scenario,
while the 2 USD/kg H2 fully exploits onshore wind
potential and adds 75 GW of PV by 2050. Higher
price scenarios (2.5 and 3 USD/kg H2) achieve
maximum potential for PV and wind oshore by
2050.
As a perspective, the Table 4 shows the
produced hydrogen per year and scenario. The
orders of magnitude among scenarios are not
comparable; they show the magnitude of the
possible market that Uruguay could have under
favorable conditions. In lower price scenarios (1
and 1.5 USD/kg H2), in the rst years, hydrogen
production is driven by the full utilization of existing
power plants, specically the biomass plant.
In 2040, the increase in the electricity demand
Figure 6. Electrolyzer capacity through the years and scenarios
and the decommissioning of older PV and wind
plants will lead to a reduction of available surplus
electricity and, therefore, a reduction in hydrogen
production in the 1 USD scenario and a slight
reduction in the 1.5 USD scenario. In 2050, due
to price reductions, it is worthwhile to further
expand renewable energies, and hydrogen
production will increase again. Electric generation
and hydrogen production grow signicantly for the
higher price scenarios (2, 2.5, and 3 USD/kg H2).
109
Table 4. Hydrogen production quantities in the dierent scenarios and years.
Some curtailment remains, but most electricity
produced is used for hydrogen production. This
shift means that electricity demand becomes a
secondary service, with the primary goal being
hydrogen production. According to our model,
this would be protable for the country, but the
actual implications for infrastructure, including
Regarding the hydrogen production system,
Figure 6 shows the required electrolyzer capacity
expansion across dierent scenarios. The
roadmap scenario diers to the values given in the
ocial hydrogen roadmap, for 2025 approximately
70 MW of electrolyzer are required, in comparison
to the 100 MW reported, in 2040 0.43 GW vs 0.6
GW, in 2040 8.69 GW vs 9 GW. These dierences
can be explained by the dierence in the utilization
of the electrolyzers; here, they are operated for
more hours, so for the same hydrogen demand,
you require less electrolyzer capacity. In the
Hydrogen roadmap, most projects are assumed
as o-grid systems, whether they are fully Wind,
PV or PV+Wind operated, and therefore with
lower utilization hours.
In market price scenarios, varying hydrogen prices
lead to dierent scales of electrolyzer capacity
expansion. The 1 USD/kg H2 scenario maintains
modest growth with around 290.6 MW of alkaline
electricity and hydrogen transport, as well as river
transport, maritime, and port infrastructure, are
not considered.
electrolyzers until 2040. As prices increase,
signicant expansions occur. The 2 USD/kg H2
scenario reaches about 27.2 GW by 2040 and
118.5 GW by 2050. The 2.5 USD/kg H2 scenario
sees even more growth, with capacities reaching
around 113 GW by 2040 and 482.4 GW by 2050.
The highest price scenario of 3 USD/kg H2 shows
exponential growth, achieving around 320.9 GW
by 2040 and 503.8 GW by 2050, illustrating
potential massive scale-up under favorable
economic conditions.
Technological changes occur over time, with
alkaline electrolyzers initially dominant. By
2040, PEM electrolyzers become competitive
due to increased eciency, and by 2050, new
installations are about 80% PEM and 20% alkaline
for scenarios with capacities above 2 GW.
Regarding the installed battery capacity and
power, the Figure 7 shows the results. Battery
expansion becomes necessary by 2030 in all
110
scenarios, with hydro dams providing exibility
until then. A synergy between the electrical system
and hydrogen production reduces power capacity
needs in scenarios with signicant hydrogen
production. Storage capacity is notably reduced in
Figure 7. Battery capacity and power according to the scenario and year
Another technology that delivers exibility to
the system are hydrogen tanks for H2 storage,
with signicant expansions in the H2 roadmap
scenario. By 2050, hydrogen tanks are about 50%
of installed electrolyzer capacities but below 7.5%
of yearly hydrogen demand. The H2 roadmap
scenario requires hydrogen tanks due to constant
Figure 8 presents the LCOE for each year
and scenario; it shows a shift from operation
and maintenance cost-based to investment
cost-based systems due to renewable energy
expansion. LCOE reacts to investment decisions,
which can either increase or decrease it,
depending on the utilization of new capacity, as
seen in 2025 in the dierent scenarios. In the “Only
electricity” and “H2 Roadmap” scenarios, LCOE
increases because the new biomass plant isn’t
used, while in other scenarios, it reduces overall
costs by producing useful electricity. Having huge
yearly hydrogen demand, necessitating storage to
shift hydrogen delivery to low production hours.
In market price scenarios, hydrogen is sold
directly once produced, eliminating the need for
production shifting.
the H2 roadmap and extreme hydrogen scenarios
(2, 2.5, and 3 USD/kg H2), especially by 2050.
3.1. LCOE
exible hydrogen production (scenarios 2, 2.5,
and 3 USD/kg H2) decreases the need for battery
exibility. For example, in the “Only electricity”
scenario, batteries account for about 6 USD/
MWh in LCOE in 2040 and 2050. The LCOE for
the “Only electricity” scenario tends to be higher
due to the fact there is no other sector or product
to share them with, and all capacity expansion
costs are solely to electricity. This means that
integrating and expanding the system based
on hydrogen market prices benets the country
and electricity consumers, promoting renewable
111
Figure 8. Levelized cost of electricity, by cost categories. Inv: investment. PP: power plants. O&M:
Operation and maintenance, including fuel
3.2. LCOH
energy expansion and lowering LCOE. The only
exception is in 2030, where signicant capacity
expansions in the 2.5 and 3 USD/kg H2 scenarios
cause higher LCOEs. Despite dierent power
Figure 9 shows the LCOH divided into dierent
cost categories for various scenarios and
years. The most signicant costs in the LCOH
come from the electricity used for hydrogen
production, making LCOH closely related to
LCOE and reecting its changes over time.
LCOH also depends on the capacity expansion
of the hydrogen system, including electrolyzer and
hydrogen tank capacities. Due to the modeling
assumptions hydrogen storage is only required in
the H2 roadmap scenario, adding costs in 2030,
2040, and 2050 in line with storage costs reported
in the roadmap (Ministerio de Industria, Energía y
Minería, 2023b).
The “H2 Roadmap” scenario indicates that a scale
mismatch in the early years (2025 and 2030) can
cause higher LCOH due to underutilized electricity
systems. In 2040, a signicant demand increase
leads to a peak in costs driven by storage and
electrolyzer investments. In the 1 and 1.5 USD
scenarios, LCOHs are above market prices, but
the model optimizes total costs by expanding
electrolyzers to use otherwise curtailed electricity.
plant expansions, LCOE remains relatively stable,
indicating cost-optimal decisions.
This results in higher costs in 2040 due to reduced
surplus electricity and limited infrastructure use.
For higher price scenarios (2, 2.5, and 3 USD),
LCOHs are below market prices, leading to
large expansions and high production quantities.
Overall, LCOHs tend to decrease over time, with
increases during expansion years. Despite dierent
development scenarios for Uruguay’s electricity
and hydrogen systems until 2050, LCOH remains
relatively homogeneous, following similar trends.
112
Figure 9. Levelized cost of hydrogen, by cost categories. Inv: investment. O&M: Operation and
maintenance, including fuel costs.
4. RESULTS AND DISCUSSION
This work presents a methodology for assigning
and distributing costs for a system with co-
production of two or more commodities; this
methodology can be applied to any energy system
that analyzes sector coupling. We also present
a comprehensive methodology for deriving all
input data, such as demands, year-specic
and country-specic CAPEX and OPEX, and
economic factors, such as WACC and discount
rates. The study presents dierent scenarios for
optimizing Uruguay’s electricity and hydrogen
systems. Each scenario demonstrates distinct
pathways for the evolution of the energy system,
highlighting the potential impacts of integrating
hydrogen production on installed capacities,
electricity generation, and consumption patterns.
The research highlights the strategic role of
hydropower and the necessity of battery storage
in maintaining grid stability and enhancing system
eciency, particularly to support renewable energy
expansions in photovoltaic and wind power.
The research also emphasizes the potential
economic benets of the hydrogen roadmap,
including reduced electricity costs for domestic
consumers and the promotion of renewable
energy sources with costs. The ndings suggest
that, under favorable market conditions, hydrogen
production could signicantly contribute to
Uruguay’s economy, positioning the country as a
major hydrogen exporter.
Recommendations for policymakers and
stakeholders include investing in renewable energy
capacities and hydrogen production, storage, and
transportation infrastructure; developing robust
market conditions and incentives for integrated
renewable energy investments and electrolyzer
capacities; exploring the implications for river,
maritime, and port infrastructure to handle
hydrogen transport and export; and investigating
advancements in electrolyzer technologies and
exibility measures to enhance system eciency
and reduce costs.
In conclusion, this study provides valuable insights
into optimizing Uruguay’s electricity and hydrogen
systems, demonstrating the transformative
potential of integrating hydrogen production into
the national energy mix. The research oers a
roadmap for policymakers and stakeholders to
navigate the energy transition, emphasizing the
importance of strategic planning, infrastructure
investment, and supportive policies to realize the
full potential of hydrogen as a key component of
Uruguay’s sustainable energy future.
113
5. ACKNOWLEDGMENTS
7. REFERENCES
The authors gratefully acknowledge the support of the German Federal Ministry of Education and
Research for funding this research under the URGE-H2 project. The author appreciates the support
from CSIC-UdelaR, PEDECIBA, and ANII. Author is a researcher at PEDECIBA/United Nations.
ADME. (2024). ADME. https://adme.com.uy/index.php
AUTHOR. (2024). Renewable Energy Potential Analysis in Bavaria. Chair of Renewable and Sustainable Energy
Systems.
Bouzas, B., Teliz, E., & AUTHOR. (2024). Green hydrogen production in Uruguay: A techno-economic approach.
International Journal of Chemical Reactor Engineering, 22(7), 783–795. https://doi.org/10.1515/ijcre-2024-0066
BP. (2022). Statistical Review of World Energy 2022.
Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal
of Catalysis, 39(3), 390–394. https://doi.org/10.1016/S1872-2067(17)62949-8
Corengia, M., Estefan, N., & Torres, A. I. (2020). Analyzing Hydrogen Production Capacities to Seize Renewable
Energy Surplus. In Computer Aided Chemical Engineering (Vol. 48, pp. 1549–1554). Elsevier. https://doi.
org/10.1016/B978-0-12-823377-1.50259-7
Corengia, M., & Torres, A. I. (2022). Coupling time varying power sources to production of green-hydrogen: A
superstructure based approach for technology selection and optimal design. Chemical Engineering Research and
Design, 183, 235–249. https://doi.org/10.1016/j.cherd.2022.05.007
Damodaran, A. (2024). Useful Data Sets. https://pages.stern.nyu.edu/~adamodar/New_Home_Page/
dataarchived.html
Dorfner, J. (2016). Open Source Modelling and Optimisation of Energy Infrastructure at Urban Scale [PhD Thesis,
Technische Universität München]. https://mediatum.ub.tum.de/1285570
Dorfner, J. (2023, July 18). Urbs: A linear optimisation model for distributed energy systems—Urbs 1.0.0
documentation. https://urbs.readthedocs.io/en/latest/
Dorfner, J., Schönleber, K., Magdalena Dorfner, sonercandas, & froehlie, smuellr, dogauzrek, WYAUDI, Leonhard-B,
lodersky, yunusozsahin, adeeljsid, Thomas Zipperle, Simon Herzog, kais-siala, & Okan Akca. (2019). Urbs (Version
v1.0.1) [Python]. tum-ens/urbs. https://doi.org/10.5281/zenodo.3265960
EPRI. (2023). Electrolysis Techno-Economic Analysis (Version v2.2.0) [Computer software]. https://lcri-tools.epri.
com/tea-electrolysis
García-Gusano, D., Espegren, K., Lind, A., & Kirkengen, M. (2016). The role of the discount rates in energy
systems optimisation models. Renewable and Sustainable Energy Reviews, 59, 56–72. https://doi.org/10.1016/j.
rser.2015.12.359
114
Global Modeling and Assimilation Oce (GMAO). (2015a). MERRA-2 tavg1_2d_rad_Nx: 2d, 1-Hourly, Time-
Averaged, Single-Level, Assimilation, Radiation Diagnostics V5.12.4. Goddard Earth Sciences Data and Information
Services Center (GES DISC). 10.5067/VJAFPLI1CSIV
Global Modeling and Assimilation Oce (GMAO). (2015b). MERRA-2 tavg1_2d_slv_Nx: 2d, 1-Hourly, Time-
Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4. Goddard Earth Sciences Data and
Information Services Center (GES DISC). https://doi.org/10.5067/VJAFPLI1CSIV
Global Wind Atlas 3.0. (2022). Global Wind Atlas 3.0, a Free, Web-Based Application Developed, Owned
and Operated by the Technical University of Denmark (DTU). https://windenergy.dtu.dk/english/news/
nyhed?id=3f952ab8-0be0-4ab5-8962-0b787f84503a
Ibagon, N., Muñoz, P., AUTHOR, Teliz, E., & Correa, G. (2023). Techno-economic analysis for o-grid green hydrogen
production in Uruguay. Journal of Energy Storage, 67, 107604. https://doi.org/10.1016/j.est.2023.107604
Inter-American Development Bank, & Paredes, J. R. (2017). La Red del Futuro: Desarrollo de una red eléctrica
limpia y sostenible para América Latina. Inter-American Development Bank. https://doi.org/10.18235/0000937
International Energy Agency. (2019). The Future of Hydrogen. IEA. https://iea.blob.core.windows.net/
assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf
International Energy Agency. (2022). World Energy Outlook 2022. https://www.iea.org/reports/world-energy-
outlook-2022
IRENA. (2020). Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5C climate goal. International
Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_
Green_hydrogen_cost_2020.pdf
IRENA. (2022). Geopolitics of the Energy Transformation: The Hydrogen Factor. International Renewable Energy
Agency. https://www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen
Kais Siala, Houssame Houmy, Buchenberg, P., Thushara2020, Lodersky, & Sonercandas. (2022). tum-ens/
pyGRETA: Python Generator of REnewable Time series and mAps (Version v2.1) (Version v2.1) [Computer
software]. tum-ens. https://doi.org/10.5281/ZENODO.3727416
Kumar, S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Materials Science
for Energy Technologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002
Kumar, S., & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy
Reports, 8, 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127
Laguna-Bercero, M. A. (2012). Recent advances in high temperature electrolysis using solid oxide fuel cells: A
review. Journal of Power Sources, 203, 4–16. https://doi.org/10.1016/j.jpowsour.2011.12.019
Mackenzie, W. (2023, April 3). Latin America (LATAM) & Canada solar PV system pricing 2023. https://www.woodmac.
com/reports/power-markets-latin-america-latam-and-canada-solar-pv-system-pricing-2023-150114048/
Mackenzie, W. (2024, March 1). Latin America solar PV system pricing 2024. https://www.woodmac.com/reports/
power-markets-latin-america-solar-pv-system-pricing-2024-150211127/
Ministerio de Industria, Energía y Minería. (2018). Estudio de Prospectiva de la Demanda Energética 2018. https://
www.gub.uy/ministerio-industria-energia-mineria/comunicacion/publicaciones/estudio-prospectiva-demanda-
energetica-2018
115
Ministerio de Industria, Energía y Minería. (2023a). BEN Balance Energético Nacional. https://ben.miem.gub.uy/
balance.php
Ministerio de Industria, Energía y Minería. (2023b). Uruguay’s Roadmap for Green Hydrogen and Derivatives.
https://www.gub.uy/ministerio-industria-energia-mineria/comunicacion/noticias/hoja-ruta-hidrogeno-verde-
uruguay-version-nal
Moore, M. A., Boardman, A. E., & Vining, A. R. (2020). Social Discount Rates for Seventeen Latin
American Countries: Theory and Parameter Estimation. Public Finance Review, 48(1), 43–71. https://doi.
org/10.1177/1091142119890369
NREL (National Renewable Energy Laboratory). (2023). 2023 Annual Technology Baseline. National Renewable
Energy Laboratory. https://atb.nrel.gov/
OECD. (2021). Assessment of a social discount rate and nancial hurdle rates for energy system modelling in
Viet Nam (OECD Environment Working Papers 181; OECD Environment Working Papers, Vol. 181). https://doi.
org/10.1787/a4f9a3-en
Oeko-Institut. (2023). PTX Business Opportunity Analyser (BOA): Data Documentation. Documentation of data
sources and data processing, version 1.0. Commissioned by Agora Energiewende and Agora Industry.
Ryberg, D. S., Robinius, M., & Stolten, D. (2018). Evaluating Land Eligibility Constraints of Renewable Energy
Sources in Europe. Energies, 11. https://doi.org/10.3390/en11051246
Sánchez Delgado, M. (2019). Desarrollo y validación de un modelo para la simulación de sistemas de electrólisis
alcalina para la producción de hidrógeno a partir de energías renovables [Phd, E.T.S.I de Minas y Energía]. https://
oa.upm.es/62567/
Steinbach, J., & Staniaszek, D. (2015). Discount rates in energy system analysis—Discussion Paper.
Stolten, D., & Emonts, B. (2016). Hydrogen science and engineering, 2 volume set: Materials, processes, systems,
and technology (Vol. 1). John Wiley & Sons.
United Nations. (2015). The Paris Agreement | UNFCCC. https://unfccc.int/process-and-meetings/the-paris-
agreement
Wang, Y., Kowal, J., Leuthold, M., & Sauer, D. U. (2012). Storage System of Renewable Energy Generated
Hydrogen for Chemical Industry. Energy Procedia, 29, 657–667. https://doi.org/10.1016/j.egypro.2012.09.076
117
Solar energy time series analysis via
markov chains
1.- mbemveiga@gmail.com
2.- gabrielsigaud@gmail.com
3.- Industrial Engineering Department Pontical Catholic University of Rio de Janeiro
cyrino@puc-rio.br ORCID: 0000-0003-1870-9440
4.- Industrial Engineering Department Pontical Catholic University of Rio de Janeiro
gustavo.melo.rio@gmail.com
Marianne Bechara Elabras da Motta Veiga
1
, Gabriel Kelab Sigaud
2
, Fernando Luiz Cyrino Oliveira
3
,
Gustavo de Andrade Melo
4
Recibido: 18/11/2024 y Aceptado: 04/2/2025
118
119
Brasil, ante un escenario global de preocupación por el cambio climático, viene incrementando el
uso de energías renovables, especialmente la energía solar en los últimos años. Con el crecimiento
de su participación, las características de la energía solar, como la intermitencia y las uctuaciones
aleatorias, vienen afectando la planicación de la operación del Sistema Eléctrico Brasileño (SBE). Tales
factores pueden ser estudiados con modelos de series de tiempo, auxiliando la planicación de plantas
generadoras y SBE. Con el n de contribuir al análisis factorial, el objetivo de esta investigación es
analizar las características de la generación de energía fotovoltaica en las estaciones meteorológicas del
año en dos regiones de Brasil con diferentes incidencias solares. Para ello, se aplica una metodología
basada en conceptos de Cadenas de Markov para dos series de tiempo estacionarias. El trabajo se
destaca por la subdivisión de las series de tiempo entre las estaciones climáticas, por el uso de datos
aún no estudiados y por la presentación de la metodología y resultados en detalle. El objetivo de la
investigación fue alcanzado con éxito, evidenciando las diferencias entre los modelos de generación de
energía solar entre las estaciones meteorológicas y las dos regiones estudiadas.
Brazil, given a global scenario of concern with climate change, has been increasing the use of renewable
energy, especially solar energy in the last years. With the growth in its participation, the characteristics of
solar energy, such as intermittence and random uctuations, have been aecting the operation planning
of the Brazilian Electricity System (BES). Such factors can be studied with time series modeling, helping
the planning of power plants and BES. In order to contribute to the factor analysis, the objective of
this research is to analyze the characteristics of photovoltaic energy generation in the meteorological
seasons of the year in two regions of Brazil with dierent solar incidences. For this, a methodology
based on Markov Chain concepts is applied for two stationary time series. The work stands out for the
subdivision of the time series between the climatic seasons, for the use of data not yet studied and for
the presentation of the methodology and results in detail. The objective of the research was successfully
achieved, making evident the dierences between the solar energy generation models between the
meteorological seasons and the two regions studied.
PALABRAS CLAVE: Fuentes de Energía Renovable, Fuentes de Energía Variables, Energía Solar,
Estaciones Climáticas, Cadenas de Markov, K-means
KEYWORDS: Renewable Energy Sources, Variable Energy Sources, Solar Energy, Climatic Seasons,
Markov Chains, K-means
Resumen
Abstract
120
1. INTRODUCTION
Faced with a scenario of concern about climate
change, countries are carrying out the energy
transition, thus moving away from using fossil
energy sources and increasing the use of
renewable sources (Malar, 2022). According
to the International Renewable Energy Agency
(2023), the planet had an increase in renewable
energy capacity in 2022 of 13% compared
to the previous year. Renewable energies are
considered inexhaustible, as they can always be
renewed by nature, and generate considerably
lower environmental impacts than non-renewable
energies (EPE, 2022).
Brazil has been following this transformation
in the world’s energy matrix. According to the
2023 National Energy Balance, 47.4% of Brazil’s
domestic energy supply in 2022 came from
renewable sources. In 2013, this percentage was
40.6%, that is, in 9 years, there was an increase of
approximately 17% (EPE, 2023).
In this context, solar energy is a source that
deserves to be highlighted. In 2022, it accounted
for 3.6% of the domestic energy supply in Brazil.
In addition, between 2021 and 2022, it had an
82.4% growth in installed capacity, being the
fastest growing in the country (EPE, 2023). With
the increase in its use in Brazil, its characteristics,
such as intermittency and random uctuations, will
aect even more the country’s energy generation.
Solar energy is generated from solar radiation,
captured by photovoltaic panels. In addition to
being renewable, it has the advantages of being
silent, requiring little maintenance and being able
to be installed in a short time (Imho, 2007). With
the increase in its use in Brazil, its characteristics,
such as intermittency and random uctuations,
will increasingly aect the country’s energy
generation. Considering this scenario, the use of
time series modeling and simulation methods to
study this impact is important for the planning of
the plants and the BES.
In order to contribute to this theme, the objective
of this work is to analyze the characteristics
of photovoltaic energy generation in dierent
climatic seasons (summer, autumn, winter and
spring) in two regions of Brazil with dierent solar
incidences. For this, the time series discretization
approach was used for Markov Chain modeling, a
methodology already widely used in the literature
for the analysis of electric energy time series.
Furthermore, the subdivision by climatic season
diers from other studies because it is based on
a natural phenomenon, as opposed to monthly
subdivisions, which are more frequently used, for
example.
It is worth noting that this study presents relevant
dierentials in the literature. In the rst place, to
the authors’ knowledge, data that have not yet
been studied are used. Also, these data are from
two plants located in regions with considerably
dierent characteristics and were divided by the
climatic seasons of the year, which allowed both
geographical and temporal comparisons.
The analysis presented in the study was carried
out through two daily photovoltaic energy
generation databases from ONS (National Electric
System Operator): Nova Olinda Complex, located
in Piauí (PI) and founded in 2017 (G1, 2017); and
Guaimbê Complex, located in the state of São
Paulo (SP) and inaugurated in 2019 (G1, 2019).
According to Gadelha de Lima (2020), the state of
Piauí has dierent meteorological characteristics
depending on the quarter of the year, which could
justify a division into four seasons.
Figure 1 shows the location of the two plants on
the brazilian solarimetric map. This map is an
adaptation of the one presented in the Brazilian
Atlas of Solar Energy (Pereira et al., 2017) and
shows the annual average of the total daily normal
direct irradiation over Brazil. It is possible to
perceive the dierence in the averages of direct
irradiation between the two locations of the plants,
which is greater in the Nova Olinda Complex
(Ribeira do Piauí PI) in relation to the Guaimbê
Complex (Guaimbê – SP).
121
2. THEORETICAL FRAMEWORK
The applied methodology is exploratory and can
be divided into three main phases. The rst relates
to data pre-processing, including data collection,
analysis, and treatment. In the second phase,
data processing is performed, involving modeling
via Markov Chains and obtaining results such
as stationary distribution, recurrence time, and
In the literature, there are several renewable
energy modeling studies that apply the concept
of Markov Chains in their methodologies. Sigauke
and Chikobvu (2017) performed an analysis of
daily peaks of electricity demand through Markov
Chains, seeking to nd the stationary distribution
(distribution of states in which the chain will
stabilize). To do this, the authors used demand
data from South Africa from 2000 to 2011.
Models with two states were considered, being
the positive or negative variations between the
days, and with three states, where the dierence
Figure 1 - Brazilian Solarimetric Map - Average annual normal direct irradiation.
Source: Adapted from Pereira et al. (2017).
rst passage time. In the last phase, data post-
processing, the results obtained were analyzed
for comparison between the climatic seasons and
between the plants.
between small and large positive variations was
considered.
Maçaira et al. (2019), faced with a scenario of
increased wind energy use in Brazil, showed that
the dispatch model used in the period of their
research did not consider the stochastic behavior
of this energy source. The model, which sought
to optimize long-term energy planning, only
evaluated the future aspects of water and thermal
sources. In view of this, the work proposed
the wind-hydrothermal dispatch model, which
122
A methodology based on Markov Chains was
applied to modeling the time series of photovoltaic
solar power generation. Figure 2 shows the
owchart with the main stages of the methodology,
3. METHODOLOGY
divided into the data’s pre-processing, processing,
and post-processing phases.
Figure 2 - Main steps of the methodology.
incorporated wind power generation using the
MCMC (Markov-Chain Monte Carlo) method to
simulate energy scenarios.
Ma et al. (2020) proposed a methodology for
aggregating solar photovoltaic time series data
through clustering via k-means, Markov Chains,
and Monte Carlo simulation. For the authors,
Markovian processes eciently represent the
transitions of photovoltaic power generation time
series. Based on the proposed k-means-MCMC
methodology, initially, the power generation data
should be grouped following the optimal number
of clusters, and then the transition matrix should
be assembled. Finally, from this matrix, energy
scenarios are generated via simulation.
Melo (2022) sought to show the spatial and
temporal complementarity between variable
renewable energies through the joint stochastic
modeling and simulation of solar and wind energy.
To this end, it used two methodologies and
performs three applications, through databases
of mills located in the Northeast of Brazil. Both
methodologies use Markov Chain modeling,
Monte Carlo simulation to obtain scenarios, and
the k-means technique to perform data clustering.
123
The pre-processing phase consists of obtaining,
analyzing, and treating data. The data of the time
series of daily photovoltaic energy generation of
the Nova Olinda (Piauí) and Guaimbê (São Paulo)
complexes were obtained from the National
Electric System Operator (ONS, 2022) for a period
of four years, from 06/21/2018 to 06/20/2022, with
a total of 1,461 observations for each complex.
The only two variables used were date and
energy generation. According to Ma et al. (2020),
due to the characteristics of photovoltaic power
generation data, the optimal time scale to fragment
scenarios would be daily. The methodology is
applied rst to the Nova Olinda Complex and then
to the Guaimbê Complex, so the two series are
worked separately in the modeling.
A preliminary analysis of the data obtained
from energy generation during the period was
performed. First, to test the stationarity of the
time series over the four years, Augmented
Dickey-Fuller (ADF) unit root tests were carried
out. The null hypothesis of the ADF test is that
there are unit roots in the time series and,
therefore, it would not be stationary (Dickey, D.;
Fuller, 1979). The stationarity test is essential for
3.1. Pre-processing
3.2. Processing
the application of the Markov Chain concepts,
because a non-stationary series depends on time,
and in Markovian processes, the probabilities of
transition to the next state depend only on the
current state (Norris, 1998). Furthermore, non-
stationarity would mean a change in the installed
capacity of the plants.
To complete the pre-processing phase, a
treatment of the databases is carried out so that
the time series can be modeled as Markov Chains.
First, the null or missing values were replaced by
the averages of the month in the corresponding
year, as it is an adequate estimate for the value
of generation in the period, given seasonality.
Then, so that the time series could be analyzed
by climatic season, they were subdivided into four
subsets: Summer, Autumn, Winter, and Spring.
In order to group the observations with greater
similarities, the subsets of the solar energy
generation time series, divided by climatic
season, were discretized into markovian states
independently. The clustering method used
was k-means (MacQueen, 1967), as it is easily
programmable and computationally economical.
In the k-means method, a number k of clusters
is pre-specied, and initial k centroids (average
value of clusters) are dened based on a random
variable. Then, the following steps are performed:
Observations are assigned to the nearest centroid
cluster by calculating the distance from each
observation to each centroid; New k centroids
are calculated from the average of intra-cluster
observations; Iterations of steps 1 and 2 are
3.2.1 Series discretization via k-means
performed until the centroid values do not change
further The method can be summarized by the
objective function (1).
However, to apply the k-means method, it is
necessary to pre-dene the number k of clusters.
According to Fritz et al. (2020), choosing the
wrong values for k can lead to poor results,
124
and to choose the ideal number of clusters, it is
common to use the elbow method, rst discussed
by Thorndike (1953). As the number of clusters
increases, the sum of the squared error of the
distance between the observations and the
centroids tends to decrease (Thorndike, 1953).
Hence, the elbow method helps to limit the choice
of very high values for k, in which there are no
relevant benets with the addition of a new cluster.
The elbow method can be used in conjunction with
the k-means method to nd the optimal number of
clusters (Fritz et al., 2020).
To apply the elbow method using k-means, it is
rst necessary to perform the k-means steps for
each k-value up to a chosen maximum number.
Then, the sum of the intra-cluster squared error,
or Within-Cluster-Sum of Squared Errors (WSS),
is calculated for each clustering obtained by the
k-means result. The WSS consists of the sum of
the square of the euclidean distances from each
observation to the centroid of the cluster to which
it belongs.
Consequently, a graph can be created that
presents the WSS for each value of k. So it is
possible to observe the point k at which the curve
presents a “fold”, like an elbow, and it can be
inferred that the dierence between the WSS of
k and k+1 would not provide substantial gains to
clustering.
The next step is to create the daily transition
matrices of states, P. Transition matrices are
composed of the transition probabilities pi,j
between a state i and a state j between a period n
and n+1 (Chung, 1960).
In this step, based on Melo (2022) and Ma et al.
(2020), the transition probabilities are calculated
by the ratio between the number of occurrences
of transitions from state i to state j and the
3.2.2 Creating State Transition Matrices
The transition probabilities and transition matrices
are represented by (2) and (3), respectively.
total occurrences of transitions from state I, as
represented by (4).
125
To analyze the properties of the transition
matrices, three measures of interest were
calculated: Stationary distribution (π) - represents
the distribution of states in which the chain will
stabilize, satisfying the equations (5) and (6);
Recurrence time (mii) - the expected number of
periods for a system in state i to return to that
Interpreting the above concepts, the measures
presented are important to assist in analyzing the
behavior of the Markov Chains model when the
process stabilizes. With a stationary distribution,
it is possible to identify the most frequent states
of the system, where the process is most likely
to be in the future. The recurrence time allows us
to understand, for example, the average time to
return to a state of maximum or minimum energy
Finally, in the post-processing phase, the analysis
and evaluation of the results obtained in the
previous phase were carried out, with the objective
of analyzing the characteristics of the generation
of the two plants in the four climatic seasons and
in regions of Brazil with dierent solar incidences.
In this phase, the main purposes were: to identify
the most frequent states of each season; to
compare the recurrence times of the most extreme
power generation states; and to compare the rst
3.2.3 Obtaining the results
state again, as in the equation (7); First passage
time (mij) - The number of periods expected for a
system in state i to rst passage through state j, as
in the equation (8) (Chung, 1960).
generation, while the rst passage time would
indicate the average transition time between
these two states.
3.3. Post-processing
passage times between the states of highest and
lowest power generation of each climatic season.
126
4. DISCUSSION AND PRESENTATION OF RESULTS
In this chapter, the results of the methodology’s
application are presented for the two plants
individually, starting with the Nova Olinda Complex
(PI) and, later, addressing the Guaimbê Complex
(SP). Finally, the results of the two plants are
compared. All the computational steps in this
When testing the stationarity of the time series of
the Nova Olinda Complex in the analyzed period,
the result obtained was a p-value lower than 0.01,
i.e., the null hypothesis that the time series would
not be stationary is rejected. Thus, it is concluded
that the time series is stationary and, therefore, the
installed capacity is constant, which is fundamental
for the Markov Chain modeling performed in this
work. The stationarity of the time series in the
period can be seen in Figure 3, which represents
the average daily generation per month. In addition,
the series presents considerable volatility and
annual seasonality, with higher energy generation
4.1. Nova Olinda Complex (Piauí)
chapter were performed in the programming
language (R Development Core Team, 2009).
4.1.1 Pre-processing
4.1.1.1 Collection, analysis and treatment of data
in the months of July, August, and September
and lower generation in the months of December,
January, February, and March, while the other
months assume intermediate energy generation
values. It is possible to notice greater similarities
in the data in the months of the same climatic
season. Due to this observation, an opportunity is
identied to model the time series by subdividing it
into four subsets, one for each climatic season, for
a better representation of the data in each period.
Figure 3 - Average daily generation - Nova Olinda Complex.
Source: Based on data from ONS (2022).
127
4.1.2 Processing
4.1.2.1 Discretization of the series via k-means
The discretization of the photovoltaic time series
was performed individually for each climatic
season, so that the number of clusters and
the values for the centroids were better suited
specically to each of the subsets.
The rst step in the execution was to create a
function that would calculate the k-means for
values of k from 1 to 20. The maximum number
of 20 clusters was chosen because it was veried
that this is a sucient amount to represent the
data. The second step was to create a function
that returned WSS for each of the 20 clusters.
The third step was to apply the previously created
functions to each of the subsets created. The
fourth step was the application of the elbow
Table 1 shows that winter has the highest daily
average of energy generation in the Nova Olinda
Complex in Piauí, with 1,572.87 MWh/day.
Meanwhile, the summer has a daily average of
32% lower than that of winter, with 1,066.39
MWh/day, probably due to a higher number
of cloudy days in this period of the year, which
reduces the average daily solar radiation in the
Table 1: Measures of daily energy generation - Nova Olinda Complex.
Table 2: Ideal number of clusters - Nova Olinda Complex.
Table 3: Centroids of the states - Nova Olinda Complex.
region of the plant. Furthermore, it is also possible
to note that winter has the lowest standard
deviation, while spring, the second season with
the highest average energy generation, has the
highest standard deviation, therefore, a greater
dispersion of data.
method. With the results of the WSS calculation,
a list was created that contained the ratio between
the WSS of a number k and k+1 of clusters for
k=1 to k=19. Then, for each of the subsets, the
k-value of clusters in which the calculated ratio was
greater than 0.90 was identied, i.e., the number
of clusters necessary for the reduction of the sum
of the intra-cluster squared error, when including a
new cluster, to be less than 10%, which would not
justify the addition.
Thus, the k-means result for each of the subsets
found the ideal number of clusters (Table 2) and
centroid values (Table 3).
128
4.1.2.2 Creating State Transition Matrices
4.1.2.3 Obtaining the results
In this step, the transition matrices of the Nova
Olinda Complex (Figure 4) were constructed from
All the transition matrices created were classied
as irreducible and ergodic, important properties for
the Markov Chain to have a stationary distribution.
Figure 4 - Transition matrices - Nova Olinda Complex.
Table 4: Stationary distribution - Nova Olinda Complex.
Then, stationary distributions (Table 4), recurrence
times (Table 5), and rst passage times (Figure 5)
were calculated.
the transition frequencies between the states for
each subset.
129
Table 5: Recurrence time - Nova Olinda Complex.
Figure 5 - First passage time - Nova Olinda Complex.
130
4.1.3 Post-processing
4.1.3.1 Evaluation and interpretation of results
After obtaining the model’s results, it becomes
possible to analyze and interpret the generated
values and better understand the behavior of the
daily photovoltaic power generation time series,
mainly from the stationary distributions, recurrence
times and rst passage times.
From the stationary distribution, in Table 4, it
is observed that the system presents higher
probabilities for the states of intermediate
generation values in the summer and spring
seasons. Also, the probabilities decay little by
little and in a similar way for the lower and higher
extreme states. Another way to analyze it is
by the time of recurrence of the states in Table
5. In both seasons, the recurrence times of the
extreme states are signicantly higher compared
to the central states and very close to each other.
Analyzing the extreme states, in the summer,
states 1 (289 MWh) and 11 (1,819 MWh) have a
recurrence of 25 and 29 days, respectively, while
states 1 (309 MWh) and 8 (1,969 MWh) in spring
have a recurrence of 18 and 19 days, respectively.
Consequently, the tendency is for the system
to remain in medium-generation states and the
extremes to be rarer, with lower expectations
of low or high generation in a day, especially in
the summer, whose recurrence times of extreme
states are even longer.
Autumn, on the other hand, has a higher probability
of being in the central and upper states, with lower
probabilities in states of lower energy generation,
comparatively. At this season, the two states with
the highest power generation, states 11 (1,582
MWh) and 12 (1,709 MWh), have recurrence
times of 9 and 13 days, respectively. Meanwhile,
the recurrence times of the two lowest-generation
states, states 1 (307 MWh) and 2 (624 MWh),
are 37 and 22 days, respectively. In addition, the
recurrence time of state 1 of autumn is the longest
among all states of all seasons, i.e., autumn
presents the longest average period for the system
to return to low levels of power generation. Hence,
it appears that the system has a tendency towards
higher states with a lower risk of low generation.
Furthermore, by investigating the rst passage
times of summer and spring, it is possible to
analyze that the time to leave the state of lowest
energy generation and reach the state of highest
generation for the rst time is longer than the
reverse. For example, the rst passage time from
state 1 (309 MWh) to state 8 (1,969 MWh) in the
spring is 51 days, while the time from state 8 to
state 1 is 30 days, approximately 40% shorter.
Therefore, although the probabilities of the system
being at each extreme are close, once the system
is in a low-generation state, it will take longer
to reach the higher-generation states in both
seasons.
Meanwhile, when looking at winter, the rst
passage times between the two most extreme
states, lower and upper, are close 32 days from
state 1 (875 MWh) to state 8 (1,945 MWh) and
30 days from state 8 to state 1— although their
recurrence times are quite dierent (20 days for
state 1 and 11 days for state 8). It is interesting to
note that the rst passage times between states
with more distant generation levels may be shorter
than among others with closer generations. For
example, the rst passage time from state 2
(1,209 MWh) to state 3 (1,407 MWh) is 11 days,
while the time from state 2 to state 6 (1,720 MWh)
is 8 days.
131
By testing the stationarity of the time series of the
Guaimbê Complex in the analyzed period, it was
concluded that the time series is stationary and,
therefore, the installed capacity is constant. The
stationarity of the time series in the period can be
seen in Figure 6, which represents the average
Table 6 shows that spring has the highest daily
average of energy generation in the Guaimbê
Complex, with 752.92 MWh/day. Meanwhile, the
summer has a daily average of 5% lower than
that of spring, with 717.33 MWh/day, being the
lowest average for the plant. Consequently, the
low variability of energy generation between the
seasons of the year is evident, with all values
4.2. Guaimbê Complex (São Paulo)
4.2.1 Pre-processing
4.2.1.1 Collection, analysis and treatment of data
daily generation per month. In addition, the series
has considerably lower volatility than that of the
Nova Olinda Complex, with low variations in
energy generation over the months.
being considerably close to the general average.
Also, the standard deviation of the seasons also
assumes close values.
Table 6: Measurements of daily energy generation - Guaimbê Complex.
132
4.2.2 Processing
4.2.2.1 Discretization of the series via k-means
The discretization of the photovoltaic energy time
series for the Guaimbê Complex was performed
with the same method as the Nova Olinda
Complex, but in a totally independent way, using
the k-means technique and the elbow method.
The ideal number of clusters and centroid values
are shown in Tables 7 and 8, respectively.
Table 7: Ideal number of clusters - Guaimbê Complex.
Table 8: Centroids of the states - Guaimbê Complex.
Figure 7 - Transition matrices - Guaimbê Complex.
Thus, the transition matrices of states of the
Guaimbê Complex were created, represented in
Figure 7.
Then, stationary distributions (Table 9), recurrence
times (Table 10), and rst passage times (Figure 8)
4.2.2.2 Creating State Transition Matrices
4.2.2.3 Obtaining the results
were calculated.
133
Table 9: Stationary distribution - Guaimbê Complex.
Table 10: Recurrence time - Guaimbê Complex.
Figure 8 - First passage time - Guaimbê Complex.
134
4.2.3 Post-processing
4.3 Comparison of results
4.2.3.1 Evaluation and interpretation of results
With the measurements of interest obtained for the
Guaimbê Complex, the next step is to analyze the
model’s characteristics for each of the seasons.
In summer, the stationary probability of the system
being in the state of lower power generation is the
lowest (2.27%), resulting in a recurrence time of
44 days, that is, the occurrence of a state of low
generation is extremely rare, and, once in this
state, many transitions are expected for the return.
Furthermore, state 2 (386 MWh) has the second-
lowest stationary probability at 7.47%, followed
by state 8 (1,018 MWh) at 10.11%. The states
with the highest probabilities are the higher power
plants, and the state with the highest stationary
probability is state 7 (909 MWh), with 19.86%.
Looking at autumn, the system has a higher
probability of being stationary in the upper central
states of power generation values in the seasons,
with the probabilities gradually decreasing to
the lower and upper extreme states. The two
states with the longest recurrence times are the
extremes, states 1 (244 MWh) and 9 (992 MWh),
with 15 and 23 days, respectively. Winter, on the
other hand, in the Guaimbê Complex, has higher
stationary probabilities for the upper states and
very low probabilities for the four states with lower
energy generation. An interesting case is that the
recurrence time of state 2 (324 MWh) is 38 days,
which is approximately 40% longer than the time
of state 1 (182 MWh) 27 days. In this way, the
risk of the system being in low-generation states is
lower, and there is an expectation of higher energy
generations, comparatively.
Spring has more balanced stationary probabilities
among its eight states, with the exception of state
1 (269 MWh), which has lower power generation
and a probability of only 5%.
Analyzing the times of the rst passage, it can
be seen that, in the summer of the Guaimbê
Complex, the time to leave the state of the highest
generation to the state of the lowest generation is
more than double the reverse. The rst passage
time from state 8 (1,018 MWh) to state 1 (234
MWh) is 47 days, while from state 1 to state 8
is 20 days. Hence, this characteristic is favorable
to generation because the average time to have
a low generation from a high generation is high.
However, autumn and winter have rst passage
times with the reverse logic, it takes longer to move
from a state of lower generation to one of greater
generation. This analysis is important because, in
low-generation situations, the expected time to
return to high-generation is longer. In the autumn,
the rst passage time from state 1 (244 MWh) to
state 9 (992 MWh) is 38 days, and the reverse is
23 days. Meanwhile, in winter, the time from state
1 (182 MWh) to state 11 (983 MWh) is 62 days,
and the reverse is 30 days.
Analyzing the time series of the Nova Olinda
and Guaimbê complexes, the dierences in the
variability of the average photovoltaic energy
generation throughout the year are evident since
Nova Olinda presents seasonality with higher
average generation in winter and lower in summer,
which is the wet period, while the averages of
Guaimbê are closer in all climatic seasons. In the
case of Nova Olinda, the reason for subdividing
the series by the climatic seasons to perform the
modeling is more evident, however, although the
Guaimbê Complex presents more homogeneous
monthly averages, the results for the stationary
distributions and recurrence and rst passage
135
times were signicantly dierent in each season,
as previously analyzed. Thus, the subdivision by
climatic season proved to be relevant for both
plants.
Another interesting fact is that the climatic
seasons aect each region dierently as well, with
similarities between dierent seasons in the two
regions. For example, the highest concentration
of stationary probabilities in upper central states is
a case present in summer and spring in the Nova
Olinda Complex, but it also happens in the autumn
in the Guaimbê Complex. On the other hand, the
autumn of Nova Olinda is similar to the winter of
Guaimbê because the states of lower generations
have signicantly lower stationary probabilities
than the others and higher probabilities in the
higher states. Meanwhile, Nova Olinda’s winter
and Guaimbê’s spring are the seasons with the
most balanced stationary probabilities between
the states.
In addition, analyzing the rst passage times,
other similarities were found. The cases in which
the rst passage time from the state with the
highest generation to the lowest was longer than
the inverse were the autumn in Nova Olinda and
the summer in Guaimbê. The opposite happened
in the summer and spring in Nova Olinda and in
the autumn and winter in Guaimbê. On the other
hand, the winter of Nova Olinda and the spring
of Guaimbê had the closest rst passage times
when comparing the most extreme states.
Finally, BES can use this analysis to assist in
the country’s energy planning by calculating the
probability of possible scenarios of low or high
photovoltaic generation by region and climatic
season. The detailed study of the characteristics
of renewable sources brings greater security to
the supply of energy demand in the country.
Brazil has been going through a process of
changing its energy matrix and increasing the use
of renewable energies non-dispatchable. In this
context, photovoltaic solar energy has stood out
due to the signicant growth of its share in the
country. Hence, its characteristics of intermittency
and random uctuations have a greater impact on
the national energy supply scenario. Therefore,
the study of photovoltaic generation through
modeling methods is relevant, and an opportunity
to contribute to the literature was found through
the present work.
This work studies the generation characteristics
of two photovoltaic solar power plants located
in regions with solar incidences of dierent
magnitudes and seasonalities. The methodology
used was based on Markov Chains. The time series
were subdivided among the climatic seasons
of the year. Then, the state transition matrices
5. CONCLUSION
were created, and the results of the measures of
interest, such as stationary distribution, recurrence
time, and rst passage time, were investigated.
Consequently, it was possible to analyze the
dierences between the photovoltaic energy
generation in the dierent seasons and regions. In
this way, the objective of the work was achieved
in a pertinent way.
Conrming the initial hypothesis, the results
showed signicant dierences in solar energy
generation between the regions and between the
climatic seasons, which evidenced the relevance
of the comparative study carried out. By analyzing
and better understanding the specicities of each
location and season, power plants and the Brazilian
Electric System can plan more eciently about
energy generation, analyzing the probabilities of
the occurrence of states of dierent generation
values.
136
6. REFERENCES
Chung, K. L. (1960). Markov Chains with Stationary Transition Probabilities. Springer-Verlag.
Dickey, D. & Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root.
Journal of the American Statistical Association, v. 74, p. 427-431.
EPE (2022). Fontes de Energia. https://www.epe.gov.br/pt/abcdenergia/fontes-de-energia
EPE (2023). Balanço Energético Nacional 2023. Ministério de Minas e Energia.
Fritz, M., Behringer, M. & Schwarz, H. (2020). LOG-Means: eciently estimating the number of clusters in large
datasets. Proceedings of the VLDB Endowment, v. 13, n. 12.
G1 (2019). Complexos de energia solar são inaugurados em duas cidades do interior de SP. https://g1.globo.
com/sp/bauru-marilia/noticia/2019/08/15/complexos-de-energia-solar-serao-inaugurados-em-duas-cidades-
do-interior-de-sp.ghtml
Gadelha, M. L. (2020). Climas do Piauí: interações com o ambiente. Edufpi.
IEA (2023). Renewable Energy Market Update - June 2023. https://www.iea.org/reports/renewable-energy-
market-update-june-2023
Imho, J. (2007). Desenvolvimento de Conversores Estáticos para Sistemas Fotovoltaicos Autônomos. Master’s
thesis presented to the School of Electrical Engineering of Universidade Federal de Santa Maria.
Ma, M., Ye, L., Li, J., Li, P., Song, R. & Zhuang, H. (2020). Photovoltaic Time Series Aggregation Method Based
on K-means and MCMC Algorithm. Asia-Pacic Power and Energy Engineering Conference, v. 2020-September,
n. 9220338.
Maçaira, P., Cyrillo, Y. M., Cyrino, F. & Souza, R. C. (2019). Including wind power generation in Brazil’s long-term
optimization model for energy planning. Energies, v. 12, n. 826.
Macqueen, J. (1967). Some methods for classication and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, p. 14.
Malar, J. P. (2022). Conheça os tipos de energia renovável e quais são usados no Brasil. CNN Brasil. https://www.
cnnbrasil.com.br/business/conheca-os-tipos-de-energia-renovavel-e-quais-sao-usados-no-brasil
Melo, G., Cyrino, F. & Maçaira, P. (2022). Simulação estocástica conjunta de energias renováveis. Master’s thesis
– Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.
Nascimento, A. & Araújo, T. (2017). Maior parque solar da América Latina é inaugurado no Piauí. https://g1.globo.
com/pi/piaui/noticia/maior-parque-solar-da-america-latina-e-inaugurado-no-piaui.ghtml
Norris, J. R. (1998). Markov chains. Cambridge university press.
ONS (2022). http://www.ons.org.br
Pereira, E. B., Martins, F. R., Gonçalves, A. R., Costa, R. S., Lima, F. L., Rüther, R., Abreu, S. L., Tiepolo, G. M.,
Pereira, S. V. & Souza, J. G. Atlas brasileiro de energia solar. 2.ed. São José dos Campos: INPE.
R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
Sigauke, C. & Chikobvu, D. (2017). Estimation of extreme inter-day changes to peak electricity demand using
Markov chain analysis: A comparative analysis with extreme value theory. Journal of Energy in Southern Africa, v.
28, n. 4.
Thorndike, R. L. (1953). Psychometrika, v. 18, p. 266-267.
137
China and the global expansion of green
energy technologies: EVs, batteries and
lithium investments in Latin America.
China y la expansión global de las tecnologías de energía
verde: vehículos eléctricos, baterías e inversiones en litio
en América Latina
1.- University of Hong Kong ORCID: 0000-0003-0282-468X.
Ricardo Lopes Kotz
1
Recibido: 17/11/2024 y Aceptado: 13/12/2024
138
139
China se ha convertido en un líder mundial en baterías de litio y ha utilizado estas capacidades para
desarrollar un importante ecosistema de innovación en vehículos eléctricos, cuyas empresas se están
expandiendo al mundo. El factor clave para la promoción exitosa de los vehículos eléctricos en China
ha sido la política industrial. Las tecnologías verdes pueden verse como la nueva frontera para la
expansión global de las empresas chinas debido a sus capacidades tecnológicas y de innovación y
América Latina es uno de los principales destinos de la inversión extranjera directa (IED) en vehículos
eléctricos, litio y baterías. El presente artículo examina el panorama y las tendencias de la IED
realizada por empresas chinas en la región, con el objetivo de analizar la posibilidad de que los países
latinoamericanos integren la cadena de valor liderada por China en energía verde como parte de sus
procesos de desarrollo y políticas industriales. Los resultados son preliminares, pero inferimos que hay
una nueva fase de participación China en América Latina post-Covid, con un cambio en el perl de la
IED: 1) las inversiones relevantes ahora se realizan no solo a través de empresas estatales, sino cada
vez más realizadas por empresas privadas; 2) los sectores de destino están cambiando lentamente
del petróleo, el gas y la agricultura hacia fuentes de energía renovables, vehículos eléctricos y minería
de minerales estratégicos; 3) los ujos de inversiones son menores en la cantidad total, pero hay un
mayor número de proyectos en la región en general; 4) los proyectos de IED se dirigen cada vez más
a sectores intensivos en conocimiento/tecnología, en lugar de sectores intensivos en capital, con un
aumento gradual de la IED totalmente nueva como modo de entrada.
China has become a global leader in ion-lithium batteries and has used these capabilities to develop
an important innovation ecosystem in electric vehicles, which are now expanding to the world. The key
driver to China’s successful promotion of electric vehicles has been industrial policy. Green technologies
can be seen as the new frontier for the global expansion of Chinese rms due to their innovation and
technological capabilities and Latin America is one of the main destinations for foreign direct investments
(FDI). The present article examines the landscape and trends of FDI conducted by Chinese rms in the
region, analyzing the possibility for Latin-American countries to integrate Chinese-led value chain in
green energy as part of their developmental processes and industrial policies. The key ndings are
preliminary,: 1) relevant investments are now conducted not only through state owned enterprises,
but increasingly made by private rms,; 2) sectors of destination are slowly changing from oil, gas and
agriculture towards renewable energy sources, electric vehicles and mining of strategic minerals; 3)
the ows of investments are smaller in the total quantity, but there is a higher number of projects in
the region overall; 4) the FDI projects are increasingly directed in knowledge/technologically intensive
sectors, instead of capital intensive ones with a gradual increase in greeneld FDI as the mode of entry.
PALABRAS CLAVE: China; vehículos eléctricos; upgrading; inversiones extranjeras directas; América
Latina.
KEYWORDS: China; electric vehicles; upgrading; foreign direct investment; Latin America.
Resumen
Abstract
140
1. INTRODUCTION
China has become a global leader in ion-lithium
batteries and has used these capabilities to develop
an important innovation ecosystem in electric
vehicles, which are now expanding globally. CATL
is the most well-known successful case in battery
production, followed by BYD, which produces
both batteries and cars, in a business model of
vertical integration. Another important Chinese
player in EVs market is Great Wall Motors. Taken
together these rms have invested signicant
funding in foreign direct investment projects for
manufacturing and assembly, mainly in Argentina,
Brazil and Chile. Other important Chinese actors
in this landscape include mining rms such as
Tianqi Lithium, Jixing Mining and Ganfeng Jixin
(Sanderson, 2022; AEI, 2024).
Green technologies and eorts towards
decarbonization can be seen as a new frontier for
the global expansion of Chinese rms due to their
innovation and technological capabilities in these
areas, and Latin America has been a region of
growing interest in this regard. Considering these
points, the present article examines the landscape
and trends of FDI conducted by Chinese rms in
the region, aiming to analyze the possibility for
Latin-American countries to integrate Chinese
FDI in green energy as part of their developmental
path and industrial policies.
Ford’s popularization of combustion vehicles led
the way for the creation of immense wealth for oil
companies in the XX century. The popularization
of electric cars could create wealth for the mining
companies that access the minerals needed
for producing the batteries for these vehicles,
something that will bear a cost for the environment.
The lithium-ion battery is a game changer due to
its capacity for powering digital devices, the fact
of being small-sized, safe, and oering a long
time of use (autonomy) before needing to be
recharged. These batteries have made possible
the extensive production and use of electric
vehicles. Investments in R&D capacity for ion-
lithium batteries and governmental subsidies for
the purchase of electric vehicles are the main
policy drivers leading the development of these
sectors. In 2021 China sold half of the world’s
EVs. However, this development has not been
without costs. From 2009-2019, the total cost
for the government stood at just under 100 billion
USD. Almost half of the total corresponded to EV
purchase subsidies (Dezan & Shira associates,
2020).
As the industry’s capabilities grew, subsidies have
been lowered and R&D investments have risen.
Between 2018-2020, each year’s R&D spending
was almost six times the spending on R&D
for the 2009-2017 period, showing a growing
concern with innovation and upgrading, which
fuel the global expansion of its rms. The research
will include a theoretical framing regarding the
importance of technology and upgrading and has
a focus on qualitative analysis using the case study
method mentioning the main investments in the
countries in the region, semi-structured interviews
were conducted with specialists in related elds in
order to ascertain the nature and trends of China’s
FDI in Latin America.
The article will be structured as follows: the rst
section will analyze the importance of technology
for economic growth while reviewing concepts
such as upgrading. It is an important topic as
technological capabilities are the reason that
explain why China is able to invest abroad and
compete with established developed countries
in key strategic sectors. The second section will
analyze the development of ion-lithium batteries in
China; the third section oversees the upgrading in
the EVs sector. And the fourth section verses on
the general trends of Chinese investments in Latin
America’s energy sector, with a focus on specic
projects, located mainly in Argentina, Brazil and
Chile. The conclusions analyze all these facts and
present the preliminary results of the research
summarized in four key points.
141
2. ANALYTICAL FRAMEWORK: THE IMPORTANCE OF
TECHNOLOGY AND UPGRADING
Technology is a fundamental input of economic
growth, as it engenders productivity gains across
dierent sectors. In this sense, technological
upgrading provides stimulus and supports the
process of economic development. From the
perspective of late industrializers or emerging
countries, it is a necessary input in order to promote
catching up with global markets. Domination of
the leading technologies of each historical period
allows nations to capture the higher value-added
activities and the resulting rents in order to foster
economic growth.
Solow (1994) was perhaps one of the rst to
point out the importance of technical advances
for sustained economic growth, by separating
this factor from the inputs of capital and labor
which were prominently featured in classical
economic models. Romer (1990) follows on this
thread, but presents an endogenous model of
economic growth, highlighting the importance
of human capital for technological change.
However, in a sense, this tradition dates back to
Joseph Schumpeter’s “Capitalism, Socialism, and
Democracy” (1942), which analyzes economic
change and the role of innovation and technology
in increasing productivity. One main subject that
remains across these studies is the prevalence
of state-led policies or market institutions as
propellers of technological change.
Market-led growth often focuses on the role of
rms as actors in the process of technological
development, while also recognizing the
importance of institutions. Institutions are the
rules of the game which help to organize the
economy and the market (North, 1990). Examples
include securing property rights, an adequate
system of intellectual property, opportunity for
high quality education, among others (Acemoglu
and Robinson, 2012). The State-led growth
perspective relies on public policy and the agency
of the state, through industrial policy and other
mechanisms, to foster growth and innovation.
The concept of the developmental state was
coined by Chalmers Johnson (1984) to explain the
development of Japan in the post-War period and
later has been applied to other cases in Southeast
Asia, such as South Korea, Taiwan, Singapore,
Hong Kong, among others (Haggard, 2018).
Technology policy is a tool by which the State acts
to foster the development of specic economic
sectors that are deemed strategic for a country. It
can be seen dierently from the perspective of a
developed country and another who is still trying
to catch up to the international technological
frontier. However, the perception that technology
is central for economic growth is one key aspect.
Technology policy aims to bridge the gap between
investments in basic science and research on one
hand; and the activities of rms and industry on
the other (Lundvall and Borras, 2005).
These policies are based on the notion that market
failures need some form of intervention in order to be
solved and that markets may not be the most ecient
allocators of resources for invention and innovation.
Arrow (1962) arms that markets tend to underinvest
in new technologies due to the unpredictability of the
resources and the time that needs to be invested in
order to produce protable results from R&D. The
author rearms the importance of the public sector
in this process, in order to maximize spillover eects
as well as promoting invention and innovation as
public goods.
Even if investments in innovation do not generate
immediate gains through commercially viable
products, they can spillover to other activities over
time. Mazzucatto (2014), for example, shows the
importance of the investment in military research
in the United States (conducted mainly by the
government agency DARPA) that ended up creating
many technologies, such as infrared waves, the
GPS, the internet, touch screen technology and
even computers. These technologies were then
scaled to civilian and commercial use, engendering
new whole industries and high protability in
subsequent decades.
142
Furthermore, in recent years technology is not
only linked with actual products but is intertwined
with the ability to produce knowledge. Knowledge
and information can be seen as commodities
or be characterized as intangible assets, such
as patents, trademarks, industrial designs,
marketing; in addition to other forms of knowledge,
such as business strategies, organizational
capacity, management tools, among others is an
important fact that contributes to prosperity and
development (Stiglitz, Greenwald, 2018).
The national systems of innovation approach, on
the other hand, looks at the interaction between
the state, national rms and research institutions
aiming at a broader paradigm for analyzing
innovation. Knowledge is assumed to be the
central element for the economy, consequently,
learning and innovation are the central processes
through which knowledge is reproduced and
applied into the generation of value through
goods and services. Learning occurs in a socially
embedded context and in a dynamic process
that cannot be dissociated from the modern state
(Lundvall, 2010).
In this sense, the systems of innovation approach
present and encompassing view on the subject,
by arming that countries that would be best
positioned to stimulate innovation would foster
a combination of three elements working
together: 1) the national economy and public
policy; 2) institutions such as universities and
research centers, and 3) private rms. The mutual
interaction between these dierent actors with their
respective goals and perspectives would be the
best scenario conducive to innovation (Lundvall
and Borras, 2005). None of the three elements
of an Innovation System is more important than
the other. Depending on the historical period and
the technology in question, one of these three
elements might have a greater role in generating
either radical or incremental innovations in a given
sector.
According to a Schumpeterian view, there are
breaking points of technological change which
bring about new economic paradigms. These
radical innovations alter the structure of dierent
national economies which later expand these
to a set of incremental innovations across many
industries (Perez and Soete, 1988; Perez, 2001).
In each of these stages, dierent possibilities arise
for late-industrializers and their rms, depending
on the responses, catch-up strategies, and the
global geopolitical context. These moments of
rupture and change in technical paradigms would
be the best window of opportunity for latecomers
to try to leapfrog into new products and sectors
that surpass the international technological frontier
(Lee, 2019).
According to Lee (2019) catching-up means trying
to close the gap between lower and higher-income
countries and although the process involves a
certain aspect of emulating the technologies from
the leading nations, this is not enough. Catching
up involves taking dierent paths, adapting
technologies into new usages or new scales and it
can also involve leapfrogging. By leapfrogging one
understands a process in which a less advanced
nations manages to produce a technology that
transcends the international frontier, going even
beyond that which is being produced in the
leading nations.
Upgrading can occur within economic sectors,
in the case that a country becomes more
sophisticated, more ecient and/or adds more
value to a product that is already being made.
Upgrading can also occur between economic
sectors, in the case that a country or rm ceases
to produce lower value-added goods and moves
into other economic sectors. Henry Yeung (2016)
cites the example of Samsung, which started as
a trading company focused on food and textiles
and eventually upgraded into high value-added
activities such as the production of smartphones
and computers, for example.
Overall, these perspectives emphasize dierent
aspects regarding the importance of technology
for economic growth and prosperity. There
are dierent ways to promote innovation and
upgrading if these matters are analyzed through
a predominantly market-led or state-led lenses.
Some perspectives emphasize the importance of
institutional factors such as property rights while
others see the importance of technology policy in
order to address market failures. Pundits studying
143
cases of late-development point that industrial
policy might be one of the most valuable tools in
order to foster catching-up processes. Among
other factors, (neo) Schumpeterian perspectives
point to the importance of specic windows
of opportunity, during which latecomers can
approach the international technological frontier.
Finally, the national systems of innovation approach
aim to bring a holistic perspective for studying
innovation, growth and technology, presenting a
framework that considers the importance of rms,
universities and national institutions.
The ion-lithium battery has been a game changer
due to its capacity for powering digital devices,
the fact of being small-sized, safe, and oering a
long time of use (autonomy) before needing to be
recharged. These batteries have made possible
the extensive production and use of electric
vehicles. Although rst invented in the 1970’s in the
context of growing environmental concerns about
climate change and the high dependence of oil in
economic systems, it wasn’t until the mid-1980’s
that these batterie became eective to be used in
vehicles. ExxonMobil and BP, two of the biggest
energy companies in the world, were among the
rst entities to fund research in the search for
alternative energies, predicting that combustion
vehicles would soon become obsolete.
However, in the 1980’s the tide turned with falling
oil prices fueling yet another round of global
expansion of combustion vehicles. According to
Sanderson (2022), companies investing in ion-
lithium batteries at the time realized that it would
take too long to see returns remotely similar to
those that could be rapidly achieved by investing
in oil and betting on internal combustion vehicles,
due to the fact that at that point, the investment
in ion-lithium batteries was basically still working
in the basic science stage of innovation. It wasn’t
until 1985, with the innovations made by Oxford-
based chemist John Goodenough that ion-lithium
batteries would become suitable to be used in
vehicles.
3. THE STRATEGIC IMPORTANCE OF ION-LITHIUM
BATTERIES: THE CASE OF CATL
His invention would pave the way for Japan-based
scientists to conduct secondary innovations
enhancing the batteries capacity, operational
system, and weight, which would ultimately lead
to the rise of electronic consumer products in the
1990’s and beyond, initially led by companies
such as Sony, Toshiba, among others. The
basic science in lithium-ion batteries, which is a
crucial step for any innovation, was developed by
researchers in the United States and the United
Kingdom. But Japanese researchers and rms did
the second crucial step: upgrading the technology
for mass production with cost-eciency. This is
the key step that allows for the expansion of rms,
new business models and innovative products. If
Sony was the mass producer for the batteries that
would be used in consumer goods, China would
occupy this place in regard to ion-lithium batteries
used in electric vehicles (Sanderson, 2022).
According to He et. Al. the Tenth Five Year plan
(2001-2005) marks the beginning of an ocial
policy for the development of electrical vehicles
in China through growing R&D investments,
denominated the “Three Verticals and Three
Horizontals”. The Three Horizontals refer to
developing technologies for engines, batteries,
and vehicle controllers, corresponding to the parts
and components used to build the Three Verticals,
which corresponds to the nished goods such as
battery electric vehicle, hybrid electric vehicle and
fuel cell electric vehicle (FCEV) (He et. Al., 2022).
144
In 2009 Beijing expanded its previous industrial
policy for the EV industry. Wan Gang, Minister of
Science and Technology and automotive expert,
was a central gure in this process. China also
launched a program to subsidize electric buses in
2009 covering ten cities, which later expanded to
include nancing for private electric car covering
six cities as the rst eorts to try to stimulate that
segment. Between 2009 and 2017 subsidies
reached a staggering US$ 60 billion. Government
procurement was a strong policy tool with local
governments purchasing vehicles from local
companies (Sanderson, 2022).
China accounted for more than 60% of global sales
of electric vehicles in 2022, showing the success of
these policies over time. The country has focused
especially on battery-powered vehicles due to its
strong capabilities in battery production. This has
resulted in the growing importance of the minerals
used to fuel these industries. In fact, lithium,
cobalt, nickel, and copper, as well as aluminum
and steel are some of the most important minerals
in the value chain. The battery is one of the most
expensive parts of an electric vehicle and this is
especially important considering that more than
60% of EVs in China and Europe are SUVs and
larger cars, which require batteries that can be two
to three times larger than those used in smaller
models (IEA, 2023).
The extraction of the minerals needed to build
electric vehicles are subject to geopolitics and
distribution conicts between countries, not to
mention the fact that they have an environmental
impact. The structure of ion-lithium batteries supply
chain has shown China’s greater dominance,
with China-based CATL (Contemporary Amperex
Technology), founded in 2011, reaching more
than 37% of the global market share by 2022.
Furthermore, the company has managed to strike
a deal in 2019 to produce ion-lithium batteries
in Germany, supplying companies such as Audi,
BMW and Mercedes-Benz in their attempt to
advance in the EVs market. It also supplies goods
to Daimler’s electric buses (Kim, 2023).
ATL was originally founded in Hong Kong in 1999
as a company manufacturing batteries for mobile
phones. In the 2000’s with the boom of mobile
phones and later MP3 players, ATL bought a
patent from Bell labs in the US to produce polymer
batteries. ATL managed to produce batteries at a
much lower cost than their Korean and Japanese
counterparts and became a supplier to major
telecommunications and electronics companies.
This period coincided with China’s entry into the
WTO and foreign direct investment was abundant.
ATL received funding from the US-based Carlyle
Group and integrated Apple’s GVC, supplying
batteries for the Ipod in 2004. The company
was on a path of modernization and in 2005
it was bought by the Japanese company TDK
(Sanderson, 2022).
CATL separated from ATL in 2011 in the context
of the boom of the governmental policies fostering
the expansion of electric vehicles in China. The
company hired foreign talent who had worked
on the joint ventures between Chinese rms and
multinational companies in the automotive sector
in order to structure its research and development
sector. CATL built a battery that lasts for 16 years,
meaning it could be reutilized, outlasting the
original car. It also continued to work on reducing
the size and weight of the batteries as well as
improving durability and safety. The reduction of
costs is a fundamental step in popularizing EVs for
mass consumption.
In 2013 CATL was contracted by BMW Brilliance,
a joint venture with a Chinese rm. The rigorous
supervision and standards of BMW helped CATL
to upgrade its processes and product quality.
According to Sanderson:
“Between 2014 and 2017 CATLs sales
increased at a compound annual growth rate
of 263 percent. (...) In 2017 CATL led for an
initial public oering (IPO) on the Shenzhen
Stock Exchange, with the help of Goldman
Sachs. The company raised $853 million
and became the world’s largest producer of
electric car batteries with a fty percent share
of the Chinese market. It would maintain that
position consistently for the next four years.”
(Sanderson, 2022, p. 44).
145
Furthermore, the use of robotics rapidly enhanced
China’s electric batteries scale, reducing its costs
and raising its competitive capabilities (Wang,
2023). The fact that the Chinese Government
determined that Chinese electric vehicles had to
use locally produced batteries was a powerful
incentive to the industry’s expansion. In 2020
Tesla created a factory in Shanghai using CATL as
their supplier (Kane, 2020).
The key driver to China’s successful promotion of
electric vehicles has been subsidies for purchasing
EVs (given to the automakers for each car sold),
which were rst introduced in 2009. Although they
were supposed to be phased out several times
including this year, there is renewed discussion
about extending them.
1
Over time, the subsidies
have been adjusted in large part due to widespread
scale fraud by automakers who sold cars to
themselves and passed government certication
tests with larger batteries than were used in the
cars sold on the market in order to qualify for
larger subsidies (subsidies were based on battery
size). Tax rebates for EVs have also played a role
and will loom larger as China eventually phases
out subsidies. The government also introduced
a credit system in 2018. Automakers received
credits for each EV sold with the aim to force
automakers to sell more and more EVs as a
percentage of total cars sold (Yang et. al. 2021;
Dezan Shira and Associates 2022).
The cost of building this industry has been
substantial for the government. From 2009-2019,
the total cost was just under 100 billion USD. Almost
half the total were the EV purchase subsidies. As
subsidies have been ratcheted down, the state
has increased R&D spending. For both 2018 and
2019, each year’s R&D spending was almost six
times the spending on R&D for the 2009-2017
3. THE STRATEGIC IMPORTANCE OF ION-LITHIUM
BATTERIES: THE CASE OF CATL
1.- Provincial governments have stepped in to make up for the shortfall in central government subsidies (https://www.bloomberg.com/news/
articles/2023-03-07/china-s-provinces-oer-ev-sweeteners-as-national-subsidies-fade#xj4y7vzkg).
period (Dezan Shira and Associates 2022). While
many have hailed the government’s investment in
the infrastructure of EVs, it has not been costly
relative to the other types of expenditure. Four
of the top ten recipients of subsidies in China are
automotive manufacturers and most of those
subsidies are for EVs: SAIC, BYD, Great Wall and
JAC. Contemporary Amperex Technology Co.
Limited (CATL) was the eleventh largest recipient,
and two other automakers were in the top twenty
(Kawase 2022).
The goal established by the Central Government
for 2020 was for new energy and electric vehicles
to account for 70 percent of the domestic market.
Moreover, China aimed to produce two rms
ranking in the top 10 players worldwide. Electric
batteries, motors, and other components should
have reached an international level of quality and
represent 80 percent of China’s market. By 2025,
Chinese EVs rms should represent 80 percent
of the domestic market, and two homegrown
companies should be in the ranks of the 10 leading
rms with 10 percent of their total sales (State
Strategic Advisory Committee 2015). The electric
vehicle industry presents an interesting example
of China’s growing prociency in the production
of electric batteries (ion-lithium batteries), with
CATL being the most well-known success case.
Founded in 2011, the company has advanced
146
quickly in global markets and in 2021 it accounted
for more than 32% of the global market share
of ion-lithium batteries, making it the biggest
producer in the world (Sanderson 2022).
China’s domination of lithium batteries for EVs has
also been a direct product of government policy.
The government operated a “whitelist” of approved
domestic battery manufacturers which were the
only producers that EV manufacturers could use if
they wished to receive the government subsidies
for EVs. This policy led directly to the rise of CATL
and helped BYD transition from phone batteries to
auto batteries. With Guoxuan, these three are the
second, fth and ninth largest EV battery makers
in the world. From 2014-2017, CATLs sales
increased at a compound annual growth rate of
263 percent (Sanderson 2022).
The case of BYD Auto is important and needs
to be mentioned, considering it overtook Tesla’s
position as the biggest market share in electric
vehicles, producing cars, trucks, buses, electric
bikes, among other products. BYD has been
founded in 1995, the company expanded upon
the acquisition of Qinchuan Automobile Company
in 2002 and after that it has raised HKD$ 1.6 billion
in the Hong Kong Stock Market. The rm’s electric
batteries division, called Fin Dreams, currently
holds third place among the biggest battery
makers in the world, with a 13% market share.
The rm grew very rapidly in the last two decades,
supported by the expansion of China’s consumer
market, while also being aided by the intensive
industrial policies conducted by the Chinese state,
currently holding more than 30 industrial parks
across six continents. Although most of its sales
are focused on Mainland China, the rm has been
expanding into global markets, with special focus
on Europe. According to the rm’s ocial website
it had sold more than 2.68 million vehicles (BYD,
2023) by September 2022.
By 2019, local rms, including JVs, already
dominated China’s EV market with 85 percent
market share.
2
As of now SAIC, Geely and BYD
have had a certain degree of success in their
internationalization strategy, especially exporting
to European markets. Other rms such as BAIC
and Chery continue to be suppliers mainly to the
domestic market. There are also smaller brands
such as Nio Inc. and Xpeng which are trying to
expand internationally. In fact, SAIC-GM-Wuling
(a joint venture with General Motors) and BYD
ranked third and fourth in the largest sales of EVs
in 2021, with market shares of 10.5% and 9.1%
respectively (Kane 2022), which means China
has reached the goal of producing two major
international players in the sector.
In 2021, China accounted for more than half of the
world’s global sales of EVs. However, the structure
of the EV market in China is still fragmented
with more than 200 rms producing parts,
components and the other steps in the EV value
chain. Trends suggest that there will be growing
competition in the domestic market between the
established rms, SAIC-GM-Wuling, BYD, Geely,
and newcomers such as Nio and Xpeng (Daxue
Consulting 2022). Sanderson (2022) points out
that government funding and subsidies that have
been directed to the industry since 2009 have
directly contributed to the rise of new rms in the
sector.
While the building of large-scale battery makers
has been successful, subsidies have encouraged
both lots of rm entry into the EV market and
allowed too many of them to continue to survive.
There were 119 producers of EVs in 2020. With
a market of approximately 1.5 million EVs, each
producer on average produced 12,600 vehicles,
far below the necessary scale economies (Kennedy
2020). The other issue is that quality of Chinese
EVs still lags behind. They tend to export only to
developing countries. While BYD sells more units
than Tesla, Chinese EV rms generally sell to the
low and middle tiers of auto buyers. The Chinese
makers comprise 80 percent of the domestic
market, which at 3.3 million cars sold in 2021
comprised 53 percent of global sales in units. In the
same year China accounted for 35% of exported
electric cars, compared with 25% in 2021. Europe
2.- McKinsey “Winning the Chinese BEV Market,” May 4, 2021.
147
Between 2005 and 2012 is estimated that China’s
total FDI toward South America plus Mexico
totaled around $63 billion, while between 2005-
2023 the total FDI of Chinese rms in the same
countries reached $212 billion. Brazil represented
just over one-third of the total, with $73.3 billion
worth of Chinese investment in 264 projects (AEI,
2024). Chinese FDI in Latin America continued
to grow until it was interrupted by the social
and economic challenges of the pandemic,
aggravated by China’s strict lockdown and zero
COVID policies. In 2020 and 2021, Latin America
saw a downfall of the total amount invested by
China in the region.
However, the investment ows grew in 2022 and
2023 only this time, the funds were directed
toward new sectors such as solar, wind, and
hydropower as well as electric vehicles (EVs).
Mining in strategic materials such as lithium
and rare earth minerals, which are crucial as
supplies for the value chain of many advanced
technologies involved in decarbonization is also a
priority. Prominent Chinese rms acting in these
new subsectors are privately owned and/or mixed
capital companies, such as BYD and Great Wall
Motors, for example (Rhodium Group, 2024).
In Latin America in 2022-2023 the general trend
of Chinese investment has been of a higher
number of smaller projects. This means a shift
from the previous trend of big infrastructure
projects under the Belt and Road Initiative (BRI),
such as State Grid’s and China Three Gorges’
multi-billion investments in Brazil and Argentina,
for example, toward more nimble, numerous,
and technologically intensive projects (Kotz and
Haro-Sly, 2023). Albeit smaller in size, these new
projects are directed toward strategic areas.
remains China’s largest trade partner for both EVs
and batteries. In 2022, the share of EVs made in
China and sold in the European market increased
to 16%, up from about 11% in 2021 (IEA 2022;
IEA, 2023).
4. AN OVERVIEW ABOUT CHINESE INVESTMENTS
IN LATIN AMERICA
Analysts have noted that the term “New
Infrastructure,” which has appeared in Chinese
media and policy documents, as the lexicon
designating the sectors China wants to develop
at home while also becoming a competitive
global player (Myers, Melguizo and Wang, 2024).
Information technologies linked to data centers,
semiconductors, and articial intelligence are
important focuses of policymakers in Beijing, but
so are renewable energy generation and electric
vehicles. Technology is a key aspect in China’s
eorts to revive its domestic economy and
competing with the United States.
The shift in foreign investment policy reects
the changing priorities and characteristics of
the Chinese economy. Concepts such as new
“quality productive forces,” “small but beautiful,”
“indigenous innovation,” and self-reliance have
emerged as priorities for the Chinese state. The
government is trying to reignite economic growth
amid the diculties and slowdown caused by
an aging population, high youth unemployment,
the property crisis in the real estate sector, and
a recovery in consumption post-COVID that was
not as exuberant as Beijing had expected. All of
these reect in Chinese rms investing abroad,
which are trying to nd new markets and trade
partners, focusing on technology and innovation,
while also exporting overcapacity in industries
where domestic demand is falling, as the case of
EVs (Myers, Melguizo and Wang, 2024).
The following cases of FDI in dierent countries
illustrate the broader trends mentioned in the
previous paragraphs. For example, in 2022, there
were two FDI acquisitions in the lithium sector in
Argentina, made by Ganfeng Lithium and Zijin
Mining Group, with a total value of $1.7 billion.
148
Greeneld investments in battery factories and
mining by Chinese automobile manufacturer
Chery and a lithium carbonate factory from Liex,
a subsidiary of Zijin Mining Group, were both
announced in Argentina in 2023 (AEI, 2024).
In Chile, the Chinese EV manufacturer BYD
announced a $290 million investment to
exploit lithium. In addition to that, automobile
manufacturer Geely acquired seven plants
globally, including one in Cordoba, Argentina, by
forming a joint venture with Renault. The plants
make aluminum parts for gearboxes that will be
used in its subsidiary Horse, which produces
gearboxes at other plants in Chile and Brazil and
supplies companies like Renault, Dacia, Nissan,
and Mitsubishi (China Daily, 2024). Chile produces
circa 32% of the world’s lithium and represented
89% of China’s imports of lithium carbonate in
2022, reinforcing the country’s strategic position
vis-à-vis the Asian partner. Moreover, much of the
lithium that is produced in Argentina goes through
Chile to be exported to China, reinforcing its
competitive prole due to logistics.
Chile has developed a national strategy to try to
move up the lithium value chain, adding value to
the sector instead of just extracting and exporting
the mineral. Although in its initial stages, Boric’s
industrial policy will focus on public-private
partnerships to try to maintain stages of the
adding value inside the country’s territory. It will
also establish the creation of a public company
focused on research and development and
technology projects linked to mineral sectors.
Moreover, Chile also detains expressive reserves
of copper, which is also used in technologies linked
to decarbonization and just general-purpose
electronics (Chile National Lithium Strategy, 2024).
As of this moment in the North American rm
Albermale and Chilean private rm SQM are the
main rms acting in Chile’s lithium sector. The rm
Tianqi Mining acquired a 22% stake at SQM and if
BYD’s project does go through, it would promote
a greater presence of Chinese rms in Chile.
In Brazil, there was continued investment by Great
Wall Motors, which in 2021 bought a Mercedes-
Benz factory in São Paulo state aiming to produce
electric vehicles and batteries. The company
continues building production capacity with an
investment plan of 4 billion Brazilian real ($776
million) between 2022-2025. The automaker
will manufacture electric cars and hybrids, in
addition to developing research and development
projects. Volvo, a Swedish automaker whose
main shareholder position has been acquired by
the Chinese rm Geely, made an investment of
881 million real in its factory in Paraná state, Brazil.
These funds will be used for the development of
products and services focusing on electromobility
and decarbonization and are part of a greater
investment cycle that is projected to reach 1.5
billion yuan between 2022-2025 (Reuters, 2024).
BYD is investing 1.1 billion reals in the Brazilian
state of Bahia to produce chassis for electric
buses and trucks, manufacture electric and
hybrid passenger vehicles (with an initial projected
capacity of 150,000 units annually), as well as
processing lithium and iron phosphate in Brazil,
that will later be exported to global markets. In
July 2023, the project was conrmed. BYD will
take over three factories formerly owned by U.S.-
based Ford Motors in the Bahia state, which left
the country in 2021 after more than 50 years
of operations in Brazil. BYD expects to start
production in Brazil in the second half of 2024
and has already partnered with local energy rm
Raizen to build charging network stations in eight
large metropolises in the country (Reuters, 2024).
The only Chinese battery manufacturing plant in
South America is owned by BYD and it’s located
in the Northen region of Brazil called Manaus. The
production started in 2020 and there are still many
improvements that could be made possible by
industrial policies and local suppliers’ upgrading,
seeing that the Manaus plant acts mostly in the
assembly of batteries, a lower value-added activity
if compared to the actual manufacturing of key
parts and components. As BYD’s plants in Bahia
start their production in 2025, there will possibly
be a greater demand for batteries and possibly
greater investments in that sector within Brazil.
However, since the country’s consumer market is
very expressive, with a population exceeding 215
million people, and sales of automobiles reaching
2.3 million in 2023 (CSIS, 2024), it is still uncertain
whether or not BYD’s battery factories will serve
149
simply to supply for the local market and/or if they
will also be used for exports to other countries,
potentially the MERCOSUR partners with whom
Brazil has a preferential agreement on common
taris based on the amount of local added value
in the end-product, for example.
In Peru, Zijin Mining has just announced a US$
250 million investment project for metal extraction,
which is still at the planning stage. Regarding the
case of Bolivia, the country lost possible funding
opportunities due to political and institutional
instability. Only very recently, in June and July
of 2023 Chinese companies began to invest
there again, with two projects focused on the
extraction of lithium. The rst amounting to US$
1.38 billion, to exploit the salt ats of Uyuni and
Copasa in partnership with local rm Yacimientos
de Litio Boliviano (YLB), and led by China’s CATL,
the battery rm previously mentioned. CATL has
66% of the shares in this project. The second one
was conducted by China International Trust and
Investment (CITIC) amounting to US$ 400 million,
which is still underway (Benchmark Minerals,
2024; CSIS, 2024).
Regarding its position in Latin America, in
summary, China’s state-owned enterprises were
the rstcomers to the region in the 2000’s, building
the basis in oil and gas and agriculture investments,
aiming to access natural resources needed for
maintaining the growth of China’s economy,
through mergers and acquisitions. After 2012,
came a dierent phase of FDI, in which state-owned
rms such as State Grid and China Three Gorges
made multibillion dollar investments in generation,
transmission and distribution of electricity, which
were then considered as being part of China’s
foreign policy of economic integration known as
the Belt and Road Initiative. In this period there was
greater presence of China’s banks in this process,
such as the China Export Import Bank (EXIMBANK)
and the China Development Bank, trends that
have been going down since 2019 and, since
then, rms have taken the lead through greeneld
and browneld FDI. These processes allowed for
Chinese rms to learn about the local realities as well
as the institutional, regulatory and labor standards
in dierent countries.
5. CONCLUDING REMARKS
Regarding the development of technology and
domestic manufacturing capabilities in China,
industrial policy was essential for the growth of the
EVs market since 2009, when the Government
started acting more directly in the industry through
two dierent measures: on the demand side,
government procurement for taxis, buses and
public transportation helped to boost up the market
and subsidies for buyers were also oered. On the
other hand, in the supply side, protectionism was
used to ensure that national companies would
be the main beneciaries of government funds.
Subsidies were given to companies that produced
cars domestically, but even foreign rms were
obliged to use components made by Chinese
rms such as the batteries made by CATL and
BYD if they wanted to sell to Chinese customers.
After Covid, private companies in the EVs
and green energy sector have been investing
abroad in sectors that allow for greater prots,
and which are more intensive in technology. As
was mentioned before, these changes in the
prole of FDI are connected to the domestic
challenges and the qualitative transformation of
China’s domestic economy, which is inextricably
linked to the processes of upgrading, innovation
and technological development. In this sense,
as China’s economy transitions towards
dierent sectors such as A.I, biotechnology,
pharmaceuticals, solar and wind power generation
and equipment, electric vehicles, among others,
150
so changes the prole and strategy of Chinese
rms abroad. The recent changes in the prole of
FDI in Latin America is part of the new chapter of
Chinese rms going global. It may yet be too soon
to arm, but evidence point to the articulation of
a regional value chain in green technologies led by
Chinese rms, with Chile and Argentina producing
strategic minerals and batteries, for example,
while manufacturing capacity for EVs and solar
panels is located in Brazil, which could serve as a
hub for exports to the region as a whole.
The key ndings are preliminary, but we infer that
there is a new phase of Chinese engagement
in Latin America post-Covid, with a change in
the prole of FDI: 1) relevant investments are
now conducted not only through state owned
enterprises, but increasingly made by private rms,
especially when seeing outside of legacy sectors;
2) sectors of destination are slowly changing from
oil, gas and agriculture towards renewable energy
sources, electric vehicles and mining of strategic
minerals such as lithium and rare earth minerals;
3) the ows of investments are smaller in the total
quantity, but there is a higher number of projects
in the region overall; 4) the FDI projects are
increasingly directed in knowledge/technologically
intensive sectors, instead of capital intensive ones,
as was the case in traditional (legacy) sectors
(such as electricity generation and oil) of the pre
2019 phase, which was the year of transition with
the rst EV projects being rolled out and the post-
Covid period being the consolidation of this new
phase, which is also seeing a gradual increase of
greeneld investments as a mode of entry, vis-a-
vis a predominance of mergers and acquisitions in
the early to mid-2010’s.
In conclusion, in a context of higher taris
and protectionism being imposed on Chinese
products in developed country markets such as
Europe and the US, China will continue to focus
on the international expansion of its companies
in the Global South, and Latin America is gaining
relevance. Faced with this situation, Latin
American countries must develop their own plans,
industrial policies and strategies for technological
upgrading, innovation and production of higher
value-added goods. Chinese capital can be seen
as a positive factor for the region’s development
processes, as long as the respective countries
take control of their own macroeconomic and
institutional environments.
Trends indicate that there is a window of
possibilities and opportunities open in this regard,
especially in sectors linked to decarbonization,
renewable energy, electromobility and green
technologies. However, the countries in the region
must focus on developing their industrial policies
and innovation strategies, as well as maybe
requiring technology transfer agreements linked
to some of these FDI projects. In addition to
that, investments in education and integration of
local labor into these initiatives could potentialize
spillover eects for upgrading. Conversely, the
risk remains that Latin America could go down on
a path of dependency and continuing to export
natural resources and commodities, in exchange
for industrial goods, a historical pattern that has
deleterious eects on local societies in terms of
sustainable development.
151
6. REFERENCES
American Enterprise Institute (2024). China Global Investment Tracker Database. Available at: https://www.aei.
org/china-global-investment-tracker/.
Arrow, Kenneth (1962). “Economic Welfare and the Allocation of Resources for Invention.” In The Rate and Direction
of Inventive Activity: Economic and Social Factors, pp. 609-625. Princeton, NJ: Princeton University Press.
Benchmark Minerals (2024). Bolivia chooses Chinese consortium led by CATL for $1 billion lithium investment.
Bennett, Andrew. Case Study Methods: design, use and comparative advantages. In. Sprinz, Detlef, wolinsky,
Yael. Cases, Numbers, Models: International Relations Research Methods. University of Michigan Press, 2004,
Cap. 2, p. 19-55.
Center for Strategy, Intelligence and Strategic Studies (CSIS) (2024). Mazzocco, Ilaria. Driving Change: How EVs
Are Reshaping China’s Economic Relationship with Latin America. Availabnle at: Driving Change: How EVs Are
Reshaping China’s Economic Relationship with Latin America
China Daily (2023). Chinese EV makers set eyes on Latin America. Available at: https://global.chinadaily.com.
cn/a/202308/31/WS64efbfdba31035260b81f161.html
Chile National Lithium Strategy (2024). Government of Chile. Available at: https://www.gob.cl/litioporchile/en/
Daxue Consulting Group. 2022. “China’s EV market: a rising global leader in EV technology”. August 10. https://
daxueconsulting.com/electric-vehicle-market-in-china/
Department of Commerce of the United States. 2022. CHIPS and Science Act. https://www.commerce.senate.
gov/services/les/1201E1CA-73CB-44BB-ADEB-E69634DA9BB9
Dezan Shira Associates. 2022. “China Considers Extending its EV Subsidies to 2023”. China Brieng. September
29. https://www.china-brieng.com/news/china-considers-extending-its-ev-subsidies-to-2023/
Haggard (2018) Developmental States. New York: Cambridge University Press.
He, Hongwen; Fengchun Sun, Zhenpo Wang, Cheng Lin, Chengning Zhang, Rui Xiong, Junjun Deng, Xiaoqing
Zhu, Peng Xie, Shuo Zhang, Zhongbao Wei, Wanke Cao, Li Zhai. 2022. China’s battery electric vehicles lead
the world: achievements in technology system architecture and technological breakthroughs, Green Energy and
Intelligent Transportation, Volume 1, Issue 1,. Disponível em: https://www.sciencedirect.com/science/article/pii/
S2773153722000202.
Huang, Yasheng. 2008. Capitalism with Chinese Characteristics: Entrepreneurship and the State. Cambridge:
Cambridge University Press
International Energy Association (IEA). 2022. Global EV Outlook 2022: securing supplies for an electric future.
Paris: France. IEA Publications.
International Energy Association (IEA). 2023. Global EV Outlook 2023: catchinjg-up with climate ambitions. Paris:
France. IEA Publications.
Johnson, Chalmers (1984). “The Developmental State: Odyssey of a Concept,” in Meredith Woo-Cumings, ed.,
The Developmental State (Ithaca, Cornell University Press.
Kane, Mark. 2022. “Global sales of Electric Vehicles Q1-Q4 2021”. Inside EVs. February 02. https://insideevs.
com/news/564800/world-top-oem-sales-2021/
Kawase, Kenji. 2022. “Made in China 2025’ thrives with subsidies for tech, EV makers”. Nikkei Asia. July 22.
https://asia.nikkei.com/Business/Business-Spotlight/Made-in-China-2025-thrives-with-subsidies-for-tech-EV-
makers
Kennedy, Scott. 2020. “The Coming NEV War? Implications of China’s Advances in Electric Vehicles”. Center for
Strategic and International Studies (CSIS) Brief. November 18. https://www.csis.org/analysis/coming-nev-war-
implications-chinas-advances-electric-vehicles
152
Kotz, Ricardo; Haro-Sly, Maria (2023). China’s economic diplomacy in the context of the far-right government’s
neoliberal nationalism: the case of Brazil’s energy sector. In. New nationalisms and China’s Belt and Road Initiative:
exploring the transnational public domain. ed. / Julien Rajaoson; R. Mireille Manga Edimo. Palgrave Macmillan,
2022. p. 195-215.
Lee, Keun (2019). The Art of Economic Catch-up: Barriers, Detours and Leapfrogging in Innovation Systems.
Cambridge, UK and New York, NY: Cambridge University Press.
Lee, Keun (2021). China´s Technological Leapfrogging and Economic Catch-up: A Schumpeterian Perspective,
Oxford University Press.
Lundvall, Ben-Adtke; Borras, Susana. Science, Technology and Innovation policies. In. Fagerberg, Jan, Mowery,
David C. and Nelson, Richard R. (2005) (eds): Innovation Handbook. (Oxford: Oxford University Press). Chapter
22. Pages 599-631.
Mazzucatto, Mariana (2014). The Entrepreneurial State: Debunking Public vs. Private Sector Myths. Anthem Press.
Myers, Margaret; Melguizo, Ángel; and Yifang Wang (2024). New Infrastructure: emerging Trends in Chinese
Foreign Direct Investment in Latin America and the Caribbean. United States: The Dialogue edtior.
National Congress of the People’s Republic of China. Outline of the People’s Republic of China 14th Five-Year
Plan for National Economic and Social Development and Long-Range Objectives for 2035. Translation available
at: CSET Original Translation: China’s 14th Five-Year Plan (georgetown.edu)
Naughton, Barry (2021). The Rise of China’s Industrial Policy from 1978-2020. Mexico: Universidad Autónoma
de Mexico, Centro de Estudios sobre China. Available at: https://dusselpeters.com/CECHIMEX/Naughton2021_
Industrial_Policy_in_China_CECHIMEX.pdf.
North, Douglas (1991), Institutions, Institutional Change and Economic Performance (Cambridge: Cambridge
University Press).
Perez, C., and Soete, L. (1988). Catching up in technology: entry barriers and windows of opportunity. In Technical
Change and Economic Theory, pp. 458-479, London: Francis Pinter.
Reuters (2024). China automaker BYD to invest $620 million in Brazil industrial complex.
Rhodium Group (2024). Pole Position: Chinese EV Investments Boom Amid Growing Political Backlash. United
States: Rhodium Group.
Romer, Paul (1990). Endogenous technological change. The Journal of Political Economy, Vol. 98, No. 5.
Sanderson, Henry. 2022. Volt Rush: Winners and losers in the race to go green. One World Publications.
Schumpeter, Joseph (2008). Capitalism, Socialism, and Democracy. Harper Perennial Modern Classics; unknown
edition (November 4, 2008).
Solow, Robert (1994). Perspectives on growth theory. Journal of Economic Perspectives Volume 8, Number
1 — Winter 1994 — Pages 45. Available at: https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.8.1.45
Stiglitz, Joseph; Greenwald, Bruce (2018). Creating a Learning Society. United States: Columbia University Press,
First Edition.
Wang, Dan (2023). China’s Hidden Tech Revolution: how Beijing Threatens U.S. Dominance. Foreign Aairs.
Available at: China’s Hidden Tech Revolution: How Beijing Threatens U.S. Dominance (foreignaairs.com)
Yang Andrew Wu, Artie W. Ng, Zichao Yu, Jie Huang, Ke Meng, ZhangY. Dong. 2021. A review of evolutionary
policy incentives for sustainable development of electric vehicles in China: Strategic implications, Energy Policy
148(B).
153
Uma análise sobre a inuência
geopolítica da transição energética
na cadeia de valor global de materiais
críticos
1.-bruna.targino@ppe.ufrj.br
2.- gulelmo@yahoo.com.br
Bruna Targino
1,
Paulo Gulelmo Souza
2
Recibido: 17/11/2024 y Aceptado: 13/12/2024
154
155
A medida que el mundo avanza hacia la transición energética, la demanda por materiales críticos
aumenta signicativamente debido a la necesidad de nuevas tecnologías con baja huella de carbono.
Así, la producción y el procesamiento de minerales y metales altamente concentrados geográcamente,
considerados críticos, representan una dinámica geopolítica compleja de escasez y abastecimiento. En
este sentido, el presente artículo discute la relación entre producción y procesamiento de materiales
considerados críticos con el n de analizar la concentración del mercado de estos materiales en
todo el mundo. Para ello, se utiliza el Índice de Herndahl-Hirschman (IHH) para evaluar el grado de
concentración de los materiales y, en consecuencia, la producción de nuevas dependencias económicas
y geopolíticas. Este análisis busca identicar riesgos asociados con la productividad y la concentración
de estos recursos, esenciales para la transición energética.
As the world moves towards renewable energy sources, the demand for critical materials increases
signicantly due to the need for new low-carbon technologies. In this context, this article discusses
the association between production and processing of materials considered critical in order to analyze
their market concentration around the world. For this purpose, the Herndahl-Hirschman Index (HHI) is
used to assess the degree of concentration of these materials and, consequently, the production of new
economic and geopolitical dependencies. This analysis aims to identify the challenges associated with
the lack and concentration of these resources, which are essential for the energy transition.
PALABRAS CLAVE: Transición energética, Minerales críticos, Índice de concentración
KEYWORDS: Energy transition, Critical minerals, Concentration index
Resumen
Abstract
156
1. INTRODUÇÃO
Para alcançar as metas climáticas estabelecidas
no Acordo de Paris, a descarbonização de
diversos setores como transporte, energia e a
economia global, como um todo, tornou-se uma
prioridade para os governos (Hache, Gondia Seck
& Guedes, 2023). À medida que o mundo avança
para o uso de energias renováveis e de tecnologias
com menor pegada de carbono, surgem novos
desaos associados ao aumento da demanda
por materiais essenciais para a transição
energética (IRENA, 2021). Nesse contexto, um
objetivo em comum: a reestruturação de sistemas
energéticos, visando a produção de energia limpa,
com o uso e desenvolvimento, por exemplo, de
painéis solares e baterias para veículos elétricos
(Greim et al., 2020).
Ao longo da história, o cenário geopolítico
mundial esteve associado à concentração de
reservas de petróleo, onde os maiores produtores
possuíam vantagens estratégicas sobre a cadeia
de suprimentos (Månberger & Johansson, 2019).
A partir da ascensão das energias renováveis,
a produção e o processamento de minerais e
metais altamente concentrados geogracamente,
considerados críticos, representam uma
dinâmica geopolítica complexa de escassez
e abastecimento (Månberger & Johansson,
2019). Essa mudança sugere que países com
grandes reservas e com grande capacidade no
reno desses minerais críticos podem emergir
enquanto atores estratégicos na geopolítica
global, inuenciando não apenas o mercado,
mas também as cadeias de valor associadas à
transição energética.
Nesse sentido, o objetivo deste estudo é analisar
como a transição energética afeta o mercado de
materiais críticos, considerando a distribuição
de reservas desses materiais, assim como seu
processamento ao redor do mundo. Isto é,
avaliar se a distribuição global desses materiais
representa uma relação de dependência que pode
ser utilizada com objetivos geopolíticos, visto que
são considerados materiais críticos. Para tanto,
utiliza-se o Índice de Herndahl-Hirschman (IHH)
a m de avaliar o grau de concentração tanto
das reservas quanto do processamento desses
materiais.
Na primeira seção deste estudo, apresenta-
se a breve discussão em torno do conceito de
reserva e recurso de materiais críticos diante
da transição energética, assim como discutir
a demanda por esses materiais. Em seguida,
descreve-se a abordagem metodológica utilizada
para atingir os objetivos descritos anteriormente.
O IHH foi aplicado aos seguintes produtos: níquel,
lítio, cobalto e cobre. Por m, apresenta-se uma
discussão em torno dos resultados obtidos
para cada um dos materiais críticos avaliados,
baseando-se no índice IHH. Essa análise discute
a relação da concentração da produção dos
materiais selecionados e o seu processamento,
a m de identicar quais países se destacam
na cadeia de valor e, consequentemente, sua
inuência geopolítica sobre o setor.
157
2. MATERIAIS CRÍTICOS PARA TRANSIÇÃO ENERGÉTICA:
UMA DISCUSSÃO SOBRE RECURSOS E RESERVAS
Ao longo da história, a transição para outras
fontes de energia esteve associada à demanda
por materiais (Zotin, Rochedo & Szklo, 2023). À
medida que a exploração dos minerais avançou,
tornou-se possível desenvolver novas aplicações
e melhorar o desempenho técnico de diversos
produtos (National Research Council, 2008).
Desde a transição do carvão para o petróleo,
a expansão das indústrias e o surgimento de
novas tecnologias possibilitaram o surgimento de
sistemas energéticos (Fouquet, 2009).
Durante a Revolução Industrial, a máquina
vapor e a expansão das ferrovias aumentaram a
demanda por aço, cobre e outros minerais (Yang
et al. 2021). O acesso às reservas de carvão e às
tecnologias embutidas nesse processo também
contribuíram para que a Inglaterra obtivesse uma
posição de prestígio ao longo do século XIX,
consolidando-se como uma potência industrial
e econômica (Barak 2015). Da mesma forma,
motores a combustão interna, automóveis e
petroquímicos impulsionaram a expansão da
indústria do petróleo (Groß et al., 2022). O acesso
a combustíveis fósseis conduziu grande parte
da riqueza de países como Estados Unidos e
a antiga União Soviética durante o século XX
(Criekemans, 2023).
Diante desse cenário, a ascensão de energias
renováveis na atual transição energética reitera
o debate sobre a relevância da inovação e dos
avanços tecnológicos no mercado de energia
e suas dinâmicas geopolíticas (Su et al., 2021).
Novas rotas comerciais e uma maior demanda
por matérias-primas consideradas relevantes
para fabricação de tecnologias de energia
renovável intensicam a concorrência para
controlar determinados materiais, considerados
estratégicos para garantir a transição (Hatipoglu,
Al Muhanna & Erd 2020). Ao mesmo tempo, as
áreas de produção de materiais e minerais críticos
também exercem sua inuência no mercado
de energia de modo que países produtores e
consumidores enfrentam riscos geopolíticos
associados à dependência de materiais
(Månberger & Johansson 2019).
A disponibilidade desses minerais e materiais
na natureza para futura extração pode ser
classicada como recursos ou reservas,
dependendo do grau de conhecimento geológico,
maturidade tecnológica e nível de certeza
sobre a viabilidade comercial para explorá-los
(Lundaev et al., 2023). A jazida de minerais cuja
extração é econômica e tecnologicamente viável
é denominada como reserva (Roonwal, 2019).
Esses aspectos fundamentais diferenciam
as reservas dos recursos, que consistem na
disposição de minerais ou materiais alocados na
natureza que são inacessíveis devido a questões
econômicas, tecnológicas e ambientais (National
Research Council. 2008). É necessário destacar
que esses conceitos não consistem em uma
categorização xa, visto que sua classicação
enquanto recursos ou reservas podem variar
de acordo com revisões técnicas, avanços
tecnológicos ou a viabilidade econômica de sua
exploração (Lundaev et al., 2023).
Da mesma forma, a compreensão sobre
o nível de criticidade de materiais também
pode modicar-se ao longo do tempo. Na
literatura, o termo de criticidade é amplo,
pois sua denição é reavaliada à medida
que a preocupação em torno do acesso à
oferta desses materiais é crescente, devido
ao aumento da demanda (Greim et al., 2020).
A segurança do abastecimento de materiais
críticos está associada à sua abundância
e, consequentemente, à sua escassez. Isso
ocorre porque a concentração da oferta desses
materiais, em determinadas regiões, classica-
os como críticos devido à importância que
possuem para a produção de tecnologias
limpas, principalmente em um contexto de
transição energética (Lundaev et al., 2023).
Países dependentes da importação de materiais
se esforçam para garantir o fornecimento de
158
energia e outros recursos necessários para suas
economias. Para tanto, adotam estratégias que
garantam seu acesso aos materiais no mercado
internacional a m de adquirir matéria-prima
para produção de tecnologias essenciais para a
transição energética (Su et al., 2021). Por outro
lado, os países que controlam o processamento
também utilizam seus recursos para aumentar
sua inuência política tanto a um nível regional
quanto global (Månberger & Johansson 2019).
Nesse sentido, a alta concentração da ocorrência
O desenvolvimento de baterias de lítio
desempenha um papel relevante na
descarbonização de certos setores (Hache,
Sokhna Seck & Guedes 2023). Outros minerais
críticos como cobalto, níquel e cobre também
são relevantes para o desenvolvimento de redes
elétricas, armazenamento de energia, tecnologias
de geração fotovoltaicas e eólicas, assim como
sua aplicação em outras tecnologias de baixo
carbono, como na produção de hidrogênio
(Grandell et al., 2016). Como um dos setores
demandantes, tem-se o mercado de baterias
recarregáveis de íon lítio (IEA, 2018). Em 2022, por
exemplo, a venda de carros elétricos ultrapassou
10 milhões de unidades, enquanto a capacidade
dos sistemas de armazenamento dobrou no
de depósitos minerais e produção de materiais e
minerais críticos em poucos países pode implicar
na dependência de tais importações para países
que consomem esses materiais (Korinek & Kim
2011). A gura 1 abaixo ilustra objetivamente essa
questão:
Figura 1 - Produção e processamento de suprimentos para materiais críticos selecionados em 2022
(Ni-Níquel, Li-Lítio, Co-Cobalto e Cu-Cobre)
Fonte: Elaboração própria, com dados da WMD -World Mining Data (2024)
mesmo período. Entre 2017 e 2022, o setor de
energia foi o principal fator que provocou um
aumento de 70% na demanda por cobalto, 40%
por níquel e a uma triplicação na procura por lítio
(IEA, 2023).
159
A gura 2 abaixo ilustra a cadeia de abastecimento de materiais críticos, considerando suas etapas
principais, que envolvem desde a prospecção mineral, extração das minas até o produto nal.
Fonte: IRENA (2023)
O diagrama ilustra a interconexão entre essas
diferentes etapas. Primeiramente inicia-se com
a exploração, caracterização e classicação
enquanto reserva até culminar na etapa de
lavra mineral. Após a extração, os materiais são
transportados para plantas de processamento
mineral, onde são convertidos em minério
concentrado, que variam dependendo da matéria-
prima. O reno inclui as fases de puricação e
ultra-processamento dos minerais, crucial para
retirar as impurezas dos metais, preparando-os
para usos industriais. Cada vez mais, uma
discussão sobre a reciclagem desses produtos,
incluindo determinados resíduos gerados ao
longo de seu ciclo de vida. A gura 2 também
demonstra a dinâmica de interdependência na
cadeia de abastecimento de materiais críticos
(IRENA, 2023).
Nesse contexto, os países buscam garantir
não apenas o abastecimento, mas posicionar-
se como players relevantes nesse mercado. O
Departamento de Defesa norte-americano, por
exemplo, concedeu $20,6 milhões em 2023 para
avançar na exploração de níquel em Minnesota.
Além disso, o país investiu $90 milhões para apoiar
a reabertura de uma mina de lítio na Carolina do
Norte para retomar as operações até 2035 (U.S.
Geological Survey 2023). Nos últimos anos, a
China também demonstrou sua preocupação
com materiais críticos. O país investiu em
inovações tecnológicas para descarbonização,
tornando-se um dos atores mais relevantes
no registro de patentes na área de engenharia,
química e transportes, de acordo com o relatório
Global Innovation Index (WIPO, 2023). Apesar
de ser desaador prever a demanda futura por
materiais críticos, especialmente a longo prazo,
estima-se que as transformações necessárias
para a transição energética produzam novas
rotas comerciais e outras dinâmicas geopolíticas
(Hache, Sokhna Seck & Guedes 2023).
160
3. MÉTODO
Nesta seção, descreve-se a abordagem utilizada
para analisar como a transição energética afeta
o mercado de materiais críticos. Para tanto,
considera-se a concentração da produção e
do processamento de minerais críticos a m de
avaliar se sua distribuição geográca representa
uma relação de dependência entre países,
associada ao uso desses materiais. Optou-se por
analisar os seguintes produtos: cobre, lítio, níquel
e cobalto. Essa escolha deve-se ao uso desses
materiais na produção de tecnologias necessárias
para a transição energética, como turbinas,
painéis solares e baterias para veículos elétricos.
Para avaliar o grau de dependência, utilizou-se o
Índice de Herndahl-Hirschman (IHH) para medir
a concentração desses mercados.
Ao longo deste estudo, analisou-se a produção e o
processamento dos materiais críticos selecionados
a m de delimitar o foco da investigação, que se
propõe a avaliar o mercado atual de materiais
desconsiderando as possibilidades de extração
futura em sua análise. Essa escolha metodológica
pretende facilitar a análise da capacidade de
produção atual do mercado de materiais críticos,
visto que o conceito de reservas considera o
total estimado que poderá ser extraído no futuro.
Portanto, focou-se na análise da atividade de
extração, em vez de considerar as reservas,
assumindo que a extração de materiais implica na
disponibilidade de reservas para tal atividade.
Nesse sentido, a primeira seção deste trabalho
consiste na discussão sobre o uso do conceito
de recursos e reservas, assim como discutir
a demanda por esses materiais. Essa etapa
baseia-se na revisão da literatura sobre o tema,
abordando o funcionamento do mercado de
materiais críticos. Em seguida, calcula-se o
Índice de Herndahl-Hirschman (IHH) para cada
produto mencionado anteriormente desde 2020
até 2023 para acompanhar o comportamento
do IHH ao longo do tempo. Isto é, compreender
a dinâmica do mercado de materiais críticos
tanto na extração quanto no processamento. Os
valores considerados para análise foram retirados
do relatório Critical Minerals Market Review 2023
produzido pela International Energy Agency
IEA, publicado em 2023. Por m, discute-se os
resultados obtidos ao longo da realização deste
estudo.
Índices de concentração pretendem indicar o
grau de concorrência em determinado mercado.
Quanto maior o valor do índice de concentração,
menor é o grau de concorrência e mais
concentrado estará o poder de mercado virtual da
indústria (Resende, p. 55, 2013). Nesse sentido,
uma maior concentração industrial signica que
desigualdades nesse mercado, o que poderá
implicar em maior grau de concentração.
3.1. Índice de Concentração
Diferentes métricas podem ser utilizadas para
medir o grau de concentração de mercado.
Dentre as mais comuns, destacam-se as razões
de concentração (CR), que pode ser denida pela
Fórmula 3.1:
161
3.2. Dados utilizados
O CR(k) indica a parcela que as rmas possuem
em determinado mercado. Por exemplo, CR (5)
trata-se das 5 maiores rmas atuantes (Naldi &
Flamini, 2014). Outra ferramenta analítica é o
Índice de Herndahl–Hirschman (IHH), que busca
mensurar a dimensão das rmas em relação à
indústria que atuam. O IHH, portanto, permite
Elevar o market share de cada empresa ao
quadrado permite atribuir um peso maior às
empresas relativamente maiores. Assim, quanto
mais elevado for o IHH, maior será a concentração
em determinado mercado. Isto é, haverá menor
concorrência entre os produtores (Resende,
2013). Como o IHH trata-se das parcelas de
avaliar o grau de concentração do mercado de
determinado setor (Resende, 2013).
Tal expressão pode ser denida pela Fórmula 3.2:
mercado, três faixas para avaliar o IHH
considerando processos de fusões, assim como
os valores potenciais do índice após a fusão entre
dois atores. Dessa forma, compreende-se que:
Diante das informações apresentadas até aqui,
esta seção explora os dados obtidos sobre a
concentração de materiais críticos, considerando
A concorrência de grandes depósitos minerais
de cobre concentra-se no Chile, Peru, República
Democrática do Congo (RDC) e na China,
respectivamente. A China desempenha um
papel dominante no processamento de cobre,
atuando como principal país neste mercado. De
modo geral, a extração manteve-se estável nos
Tabela 1: Níveis de concentração de mercado.
Fonte: Oliveira (2023)
3.2.1. Cobre
últimos anos, com o aumento da participação
de outros países tanto na extração quanto no
processamento.
Em seguida, o Chile e o Japão também se
destacam em relação ao processamento. Nota-se
que, ao longo dos anos, a extração de cobre nos
a produção e o processamento de cobre, lítio,
níquel e cobalto
162
países selecionados mostrou-se relativamente
constante. O mesmo ocorre no processamento,
com um crescimento menos acelerado em 2023.
A China está aumentando sua capacidade de
processamento de forma consistente, o que pode
indicar um maior domínio no mercado global de
cobre processado. A expansão da produção no
Peru e RDC sugere um aumento na importância
desses países na cadeia de suprimento de cobre.
A tabela 2 e 3 abaixo resumem os dados de
produção e processamento de cobre de alguns
países.
Tabela 2: Produção de cobre
Tabela 3: Processamento de cobre
Tabela 4: Produção de lítio
Fonte: IEA (2023)
Fonte: IEA (2023)
Fonte: IEA (2023)
Os principais países que possuem depósitos
minerais de lítio são Austrália, Chile, China e
Argentina. A Austrália destaca-se na extração,
enquanto a China domina o processamento.
Desde 2020, a capacidade de processamento
da China aumentou de 265 kt para 604 kt em
2023, ou seja, expandiu-se signicativamente. A
participação de outros países cresceu nos últimos
3.2.2. Lítio
anos, o que pode indicar uma maior diversicação
na capacidade do processamento global de lítio,
embora ainda seja pouco expressiva.
A tabela 3 e 4 abaixo resumem os dados de
produção e processamento de lítio de alguns
países.
163
Tabela 5: Processamento de lítio
Tabela 6: Produção de níquel
Tabela 7: Processamento de níquel
Fonte: IEA (2023)
Fonte: IEA (2023)
Fonte: IEA (2023)
A Indonésia concentra os principais depósitos
minerais de níquel e está emergindo como
principal líder no processamento, aumentando
sua capacidade de 0.64 Mt em 2020 para 1.67 Mt
em 2023. Rússia e Canadá também se destacam
no processamento de níquel, mantendo-se
relativamente estável nos últimos anos. Embora
a China seja relevante neste mercado, o país
apresentou um declínio na sua participação no
processamento de níquel, de 0.67 Mt em 2020
3.2.3. Níquel
para 0.43 Mt em 2023. Essa mudança pode
signicar um maior protagonismo da Indonésia
neste mercado. A tabela 5 e 6 abaixo resumem os
dados de produção e processamento de níquel
de alguns países.
164
Tabela 8: Produção de cobalto
Tabela 9: Processamento de cobalto
Fonte: IEA (2023)
Fonte: IEA (2023)
A República Democrática do Congo (DRC)
lidera a produção de cobalto, apresentando um
crescimento de 103 kt em 2020 para 168 kt em
2023, consolidando-se como o principal produtor
mundial. A Indonésia, embora tenha permanecido
relativamente estável, segue como um dos
produtores mais relevantes. A categoria que inclui
outros países mostrou-se mais expressiva nos
Diante das informações apresentadas até aqui,
esta seção explora os resultados obtidos sobre a
concentração de materiais críticos, considerando
a produção e o processamento de cobre, lítio,
níquel e cobalto
As guras abaixo representam o comportamento
do IHH para cobre, lítio, níquel e cobalto,
respectivamente, desde 2020 até 2023, de
acordo com dados estabelecidos pela IEA (2023).
3.2.4. Cobalto
últimos anos, contribuindo para a oferta global. A
China destaca-se no processamento de cobalto,
crescendo de 95 kt em 2020 para 140 kt em
2023. A tabela 7 e 8 abaixo resumem os dados
de produção e processamento de cobalto de
alguns países.
4. RESULTADOS
4.1. Índice de Concentração
O gráco 1 demonstra que o cobalto apresenta a
maior concentração no que se refere à extração,
sugerindo que poucos países controlam a
maior parte das minas em operação de cobalto.
165
Apesar de uma pequena redução em 2022,
o mercado de cobalto mantém-se altamente
concentrado. O IHH de lítio também é elevado e
apresenta uma tendência relativamente estável.
Quanto ao níquel, houve uma maior concentração
O gráco 2 compara o comportamento do IHH no
que se refere ao processamento desses materiais
ao longo dos anos. O cobalto apresenta o maior
índice de concentração, demonstrando que poucos
países dominam o seu processamento. O níquel,
embora relativamente menos concentrado em
2020, apresentou um aumento em 2023. O índice
Figura 3 - IHH das reservas de materiais críticos
Figura 4 - IHH do processamento de materiais críticos
Fonte: Elaboração própria.
Fonte: Elaboração própria.
principalmente a partir de 2022. Por m, o índice
de concentração de cobre mantém-se elevado,
apesar de uma queda em 2023.
de concentração de cobre é elevado, mantendo-
se constante. Por m, o processamento de
cobre é altamente concentrado, no entanto,
manteve-se relativamente estável durante o
período analisado.
166
5. DISCUSSÃO DOS RESULTADOS E COMENTÁRIOS FINAIS
Ao longo da realização deste trabalho, analisou-
se os principais players do mercado de materiais
críticos, considerando a distribuição global
da produção e do processamento de níquel,
cobalto, cobre e lítio. Dado que as energias
renováveis compõem as estratégias globais para
alcançar metas de descarbonização, optou-se
por investigar se o aumento da demanda por
materiais críticos pode produzir uma relação
de dependência entre países que dominam
essas cadeias de valor. Essa escolha deve-se
à importância desses materiais para produção
de tecnologias renováveis, essenciais para a
transição energética e, consequentemente,
para que os países sejam capazes de cumprir
suas estratégias de mitigação e adaptação às
mudanças climáticas.
A Agência Internacional para as Energias
Renováveis IRENA declarou que é pouco provável
que os materiais críticos reproduzam a dinâmica
geopolítica dos combustíveis fósseis, alegando
que as reservas desses materiais são abundantes
e podem ser processadas em diversos locais
(IRENA, 2023). No entanto, ao avaliar o Índice
de Herndahl-Hirschman (IHH) do mercado de
níquel, lítio, cobre e cobalto no período entre 2020
e 2023, constatou-se que tanto a extração quanto
o processamento dos materiais selecionados são
altamente concentrados, mantendo-se estáveis
durante o período analisado. O alto índice de
concentração do IHH indica que pouca
competição entre os países que compõem essa
cadeia de valor. Ou seja, poucos países dominam
o mercado dos materiais críticos analisados.
Assim, identicou-se que os principais volumes
produzidos se concentram nos países em
desenvolvimento, com exceção da Austrália,
que possui grandes reservas de lítio. O Chile
também se destaca na extração de lítio e
concentra as principais minas em operação
de cobre e lítio. A República Democrática do
Congo lidera na extração de cobalto, enquanto a
Indonésia destaca-se tanto na produção quanto
no processamento de níquel. O Peru é um dos
países mais relevantes em termos de volumes
produzidos de cobre, assim como o Chile. Por
outro lado, o processamento de níquel, cobalto,
cobre e lítio é concentrado principalmente na
China.
A análise do IHH ao longo do tempo revela que
a atividade de mineração de materiais críticos
permanece altamente concentrada em certas
áreas geográcas. Essa concentração signica
que a oferta global desses materiais depende
fortemente de um pequeno número de países,
evidenciando uma falta de diversicação. Da
mesma forma, o processamento desses materiais
é igualmente concentrado, com a capacidade de
reno predominantemente localizada em poucos
países.
Por exemplo, a China possui uma posição
importante, controlando uma parte signicativa
da capacidade global de processamento de
lítio e cobalto. Tal concentração amplica os
riscos associados à cadeia de suprimentos,
pois qualquer interrupção na capacidade de
reno desses poucos países pode impactar
signicativamente a disponibilidade global de
materiais processados. Esse cenário sugere
uma dinâmica de dependência e vulnerabilidade
para países importadores que dependem do
fornecimento desses materiais para ns industriais,
tecnológicos e energéticos. A interrupção no
fornecimento desses materiais processados
pode produzir consequências signicativas para a
cadeia de valor global, visto que são necessários
para o desenvolvimento tecnológico inerente à
transição energética.
Como apontam Sattich et al. (2023), conquistas
geopolíticas vinculadas às energias renováveis
parecem depender, em grande parte, de
avanços industriais. Nesse sentido, o domínio
sobre esses mercados pode oferecer vantagens
competitivas em termos de inovação e avanços
tecnológicos. Países que controlam a mineração
e o processamento de materiais críticos
podem posicionar-se como líderes globais
167
no fornecimento de materiais críticos para a
transição energética, inuenciando não apenas
o mercado, mas também a geopolítica global.
Apesar de possuírem uma geograa de comércio
única que, em nível agregado, envolva os países
em uma rede ampla de interdependência, a
demanda constante por materiais, componentes
ou produtos acabados pode tornar cadeias
de abastecimento mais vulneráveis a riscos
geopolíticos. Por m, essa análise não sugere que
os materiais críticos reproduzam a geopolítica dos
combustíveis fósseis em torno da distribuição
geográca de suas reservas. No entanto, indica
que a transição energética pode recongurar
rotas comerciais e inuenciar novas dinâmicas de
poder global.
Ao analisar os resultados deste estudo, é
fundamental considerar suas limitações. O foco
na extração, sem incluir o total estimado das
reservas, compromete uma interpretação mais
detalhada de longo prazo sobre o mercado de
materiais críticos, visto que o surgimento de novas
tecnologias pode viabilizar a produção em outras
regiões cuja extração era considerada inviável.
Essa distinção é crucial porque o foco do estudo
na extração atual pode não reetir o potencial
de produção alternativo de longo prazo com a
prospecção de novas jazidas e reclassicação
de recursos. Para uma melhor análise, examinar
como o surgimento de novas tecnologias de
mineração e processamento viabiliza a extração
em novas áreas, reduzindo o custo unitário de
produção, contribui para compreender a dinâmica
do mercado de materiais críticos.
6. REFERENCES
Barak, On. “OUTSOURCING: ENERGY AND EMPIRE IN THE AGE OF COAL, 1820-1911.” International Journal
of Middle East Studies 47, no. 3 (2015): 425–45. http://www.jstor.org/stable/43997991.
Criekemans, David. (2023). “Geopolitics, Geoeconomics and Energy Security in an Age of Transition towards
Renewables.” In Handbook on the Geopolitics of the Energy Transition. https://doi.org/10.4337/9781800370432.
Emmanuel Hache, Gondia Sokhna Seck, Fernanda Guedes, and Charlene Barnet. (2023). “Critical Materials
New Dependencies and Resource Curse?,” 12.
Fouquet, R., (2009). A brief history of energy. In: Evans, J., Hunt, L.C. (Eds.), International Handbook of the
Economics of Energy. Edward Elgar Publications, Cheltenham, UK, and Northampton, MA, USA.
Grandell, Leena, Antti Lehtilä, Mari Kivinen, Tiina Koljonen, Susanna Kihlman, and Laura S. Lauri. (2016). “Role of
Critical Metals in the Future Markets of Clean Energy Technologies.” Renewable Energy 95: 53–62. https://doi.
org/10.1016/j.renene.2016.03.102.
Greim, Peter, A. A. Solomon, and Christian Breyer. (2020). “Assessment of Lithium Criticality in the Global Energy
Transition and Addressing Policy Gaps in Transportation.” Nature Communications 11 (1): 1–11. https://doi.
org/10.1038/s41467-020-18402-y.
Hatipoglu, Emre, Saleh Al Muhanna, and Brian Erd. (2020). “Renewables and the Future of Geopolitics: Revisiting
Main Concepts of International Relations from the Lens of Renewables.” Russian Journal of Economics 6 (4):
358–73. https://doi.org/10.32609/J.RUJE.6.55450.
IEA. (2018). “Global EV Outlook 2018 - Towards Cross-Modal Electrication.” https://doi.
org/10.1787/9789264302365-en.
IEA. (2023). “Critical Minerals Market Review 2023.” Critical Minerals Market Review 2023. https://doi.
org/10.1787/9cdf8f39-en.
IRENA. (2021). Securing Critical Minerals for the Energy Transition. Canadian Mining Journal. Vol. 142.
168
IRENA. (2023). “Geopolitics of the Energy Transition: Critical Materials.” Journal of Geographical Sciences. Vol. 33.
https://doi.org/10.1007/s11442-023-2101-2.
Korinek, Jane, and Jeonghoi Kim. (2011). “Export Restrictions on Strategic Raw Materials and Their Impact on
Trade and Global Supply.” Journal of World Trade 45 (2): 255–81. https://doi.org/10.54648/trad2011009.
Lundaev, Vitalii, A. A. Solomon, Tien Le, Alena Lohrmann, and Christian Breyer. (2023). “Review of Critical Materials
for the Energy Transition, an Analysis of Global Resources and Production Databases and the State of Material
Circularity.” Minerals Engineering. https://doi.org/10.1016/j.mineng.2023.108282.
Månberger, André, and B. Johansson. (2019). “The Geopolitics of Metals and Metalloids Used for the Renewable
Energy Transition.” Energy Strategy Reviews 26 (December 2018). https://doi.org/10.1016/j.esr.2019.100394.
Marianne Zotin, Pedro Rochedo, Joana Portugal-Pereira, and and Roberto Schaefer Alexandre Szklo. (2023).
“CRITICAL CONNECTIONS IN MATERIAL TRANSITIONS AND ENERGY TRANSITIONS.” In , 7823–30.
Naldi, Maurizio, and M. Flamini. (2014). The CR4 Index and the Interval Estimation of the Herndahl-Hirschman
Index: An Empirical Comparison.
National Research Council. (2008). “Minerals, Critical Minerals, and the U.S. Economy.” Society II: 790.
Oliveira, Isabela Fernandes De. (2023). “MERCADO BRASILEIRO DE VEÍCULOS ELÉTRICOS: UMA AVALIAÇÃO
A PARTIR DA INTEGRAÇÃO DA ANÁLISE PESTAL AO MODELO ESTRUTURA-CONDUTA-DESEMPENHO ( ECD
).”
Resende, Marcelo; Hugo Bo. (2013). “Economia Industrial.” In Revista de Administração de Empresas, 35:86–
87. https://doi.org/10.1590/s0034-75901995000500012.
Robert Groß, Jan Streeck, Nelo Magalhães, Fridolin Krausmann, Helmut Haberl, Dominik Wiedenhofer, (2022).
How the European recovery program (ERP) drove France’s petroleum dependency, 1948–1975, Environmental
Innovation and Societal Transitions, Volume 42, 2022, Pages 268-284, ISSN 2210-4224. https://doi.org/10.1016/j.
eist.2022.01.002.
Roonwal, G S. (2019). Springer Geology Mineral Exploration: Practical Application. http://www.springer.com/
series/10172.
Su, Chi Wei, Khalid Khan, Muhammad Umar, and Weike Zhang. (2021). “Does Renewable Energy Redene
Geopolitical Risks?” Energy Policy 158 (August). https://doi.org/10.1016/j.enpol.2021.112566
Thomas Sattich, Stephen Agyare e Oluf Langhelle. (2023). Solar powers renewables and sustainable development
around the world or geostrategic competition? Handbook on the Geopolitics of the Energy Transition. https://doi.
org/10.4337/9781800370432
U.S. Geological Survey. (2023). Mineral Commodities Summary 2024. Mineral Commodity Summaries 2023.
http://pubs.er.usgs.gov/publication/mcs2023.
WMD. (2024). World Mining Data. https://www.world-mining-data.info/?World_Mining_Data___Data_Section.
WIPO. (2023). Global Innovation Index 2023 Innovation in the Face of Uncertainty. International Journal
of Technology. Vol. 47. https://doi.org/10.1016/j.tranpol.2019.01.002%0Ahttps://doi.org/10.1016/j.
cstp.2023.100950%0Ahttps://doi.org/10.1016/j.geoforum.2021.04.007%0Ahttps://doi.org/10.1016/j.
trd.2021.102816%0Ahttps://doi.org/10.1016/j.tra.2020.03.015%0Ahttps://doi.org/10.1016/j.eastsj.20.
Yang, Jianfeng, Yun Yu, Teng Ma, Cuiguang Zhang, and Quan Wang. (2021). “Evolution of Energy and Metal
Demand Driven by Industrial Revolutions and Its Trend Analysis.” Chinese Journal of Population Resources and
Environment 19 (3): 256–64. https://doi.org/10.1016/j.cjpre.2021.12.028.
169
7. APÊNDICE A: TABELAS DE MARKET SHARE E S²
Tabela 10: Market Share e S² da extração do cobre
Tabela 11: Market Share e S² do processamento do cobre
Tabela 12: Market Share e S² da extração do lítio
Tabela 13 Market Share e S² do processamento do lítio
Tabela 14: Market Share e S² da extração do níquel
Tabela 15: Market Share e S² do processamento do níquel
170
Tabela 16: Market Share e S² da extração do cobalto
Tabela 17: Market Share e S² do processamento do cobalto
172
Av. Mariscal Antonio José de Sucre
N58-63 y Fernandez Salvador
Quito - Ecuador
Tel. (+593 2) 2598-122 / 2598-280 / 2597-995
enerlac@olade.org